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Consideration is given to equations of the form Bn/Bt = D V2n + Q (n); the reaction-rate
g(n) is such that d'0/dn'~0 for all values of n~0. A lower bound n =n (Y,t)
—= (y) ( ~ n) is obtained as the expectation value of the solution to the associated Brown-
ian-motion equation By/Bt = —Q(t) Vy+ 0(y), where y = y(x, t) is an auxiliary stochas-
tic variable and the random velocity U(t) is Gaussian. An upper bound n+ ( ~ n) emerges
as a concomitant of n, and an approximate analytical solution is shown to be given by
n =—~ (n + n+ ) with the accuracy bound

~
n —n

~

~ ~ ( n+ —n ) expressed analytically.

PACS numbers: 03.40.6c, 66.10.Cb

Einstein's relationship' between Brownian mo-
tion and Fourier diffusion has been utilized recently
in time-step algorithms for the efficient numerical
integration of reaction-diffusion equations. This
stochastic representation for diffusive transport ap-
pears to be particularly appropriate in the cases of
turbulent fluid flows with and without chemical
reactions. The purpose of the present communica-
tion is to show that the Brownian-motion corre-
spondence for diffusion also enables one to obtain
approximate analytical solutions to reaction-dif-
fusion equations of the basic form

Bn/Bt = D'vr'n+ Q(n),

where n = n ( x, t) denotes the concentration of a
molecular species or the local value of a thermal
variable, D is a diffusivity constant, and the reac-
tion-rate function Q(n) is continuous, at least
twice-differentiable, and such that

(stochastic-convection) equations

By/Bt= —u(t) &y+ Q(y)

Here y=y(x, t) is an auxiliary stochastic variable,
and the random velocity u(t) is Gaussian with zero
mean value and a 5-function covariance,

(u;(t)) =0,

(u, (t') ut (t")) = 2DBtJB(t' t")—
Subject to the initial value (5), the exact solution to
(6) is given implicitly by6

—

ldll

(8)

where g = ((t) —= u ( t') dt' is Gaussian with zero
0

mean value and the covariance implied by integrat-
ing (7),

d2Q/dn2~0 for all n ~0. (2)

Examples of reaction-rate functions satisfying (2)
are4

Q(n) = an —bn'+",

in which a, b, v are positive constants, and

That y given by (8) satisfies (6) is verified by dif-
ferentiating (8) with respect to t and x,

Q(y) ' —Q(np(x —g)) ' —np(x —()9t

Q(n) = —kn', (4) (10)

with k a positive constant. If supplemented with an
initial value through unbounded three-dimensional
space

g(y) Vy —Q(np(x —()) Vnp(x —()
=0

n(x, 0) —= np(x)(~0), (5) and using the formula

the solution to (1) can be approximated analytically
by considering the associated Brownian-motion

np(x ()= u(t) ' 7np(x ().
Bt

(12)
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= ((t) at the instant of time t, y can be expressed
as

My main result is that a rigorous lower bound on
n, the exact solution to (1) subject to (5), is given
generally by the expectation value of y.'

y =f(np(x —(),t), (14)
(13)

where f(,t) is defined by (8). Since (9) produces
Proof of (13).—Depending algebraically on ( ((,(t)(1(t)) =2Dtpp and ( is Gaussian, the expec-

tation value in (13) is given by

n =n (x,t)=—(y) (n.

(15)

n —= (y) = (47r Dt) 't'Jt yexp( —
l P'/4Dt) d3(

= (47rDt) ' 'Jtf(np(y), t)exp( —
l x y l'—/4Dt)d'y

with the introduction of (14). In view of (15), (14), and the time-derivative of (8) for fixed np, one obtains

,i,j 8f(no(i), i)—DV2n = 47rDt
Bt

But with Q'(n) —= dQ/dn, one has

0(y) —0((y) ) + (y —(y) ) 0'((y) )

as a consequence of condition (2), and hence

d J=(0(y)).I
X —

y I'

= n+ ( x, t) ( ~ n), defined implicitly by

id'. = t (20)

(0(») - 0((y) )

Thus (16) and (18) yield the differential inequality

r)n /Bt~DV'n +Q(n ) (19)

from which (13) follows as a consequence of
n (x, 0) = np(x) and a well-known maximum
principle. 7

An analytically simple upper bound n+

with

np—= (np(x ()), (21)
emerges as a concomitant of the lower bound n
defined by (8) and (13). To see that n+ ~ n, one
notes that the quantity (21) satisfies the linear dif-
fusion equation

enp/Bt = DV'np. (22)

Hence, the derivatives of (20) with respect to t and
x combine to produce

Bn+——D'7 ni —0(n+) =DQ(n+) '[0'(np) —0'(n+)]l'7n+l . (23)

The right-hand side of (23) is nonnegative as a
consequence of (2) and the positive character of
(20) for t & 0, for (20) implies n+ & np for
0(X) & 0 and n+ ( np for Q(h. ) ( 0.6 Therefore
(22) yields the differential inequality

for it follows from n ~ n ~ n+ that

n —n ~ —n —n+

Bn+/rit) D'vr'ni+ 0(n+) (24) = —,
' [f(np, t) (f(np(x —(),t)) ] (27)

n+ =f(np, t). (25)

An approximate solution to (1) subject to (5) is
given by the arithmetic average of the lower and
upper bounds,

from which n+ ~ n follows as a consequence of
n+ (x, 0) = np(x) and a maximum principle. 7

Owing to the correspondence between (8) and
(20), the upper bound n+ can also be expressed in
terms of the function introduced in (14):

where (15) is recalled. Hence, the global accuracy
of the approximation n = n can be determined for
all x and t ~0 by evaluating the final member of
(27) for prescribed 0 (n) and n p( x ) .

Consider as an example the reaction-rate expres-
sion (4), for which (8) yields

y = [np(x $) '+ kt]

n—= ,'(n +n+—), (26) f(np(x (),t—)— (28)
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and the quantities (15) and (20) are

n =(4nDt) "'Jfn, (y) '+tet) 'exp( —Ix —yl'l4Dt) dty

=ire (4n—Dt) 't Jfne(y)+(ttt) 'I ne(y) exp( —Ix yl (—4Dt)tt'y

n+ = (np
' + kt)

with

ne=(4nDt) ''Jne(y)exp( —Ix ylt/4—Dt)d'y

according to (21). By subtracting (29) from (30), the final member of (27) is obtained as

,
' (n—+—n )

(29)

(30)

(31)

(33)

r ' exp—

,' kt((4s—rDt) / Jt[1+ktnp(y) ] 'np(y) exp( —
~
x y~ /4D—t) d y —(1+ktnp) 'np ]. (32)

Since the curly-bracketed expression is asymptotic to 2Dt ~Vnp(x) ~
for small t, the right-hand side of(32) is

generally of O(t2) for small t One .must fix the initial value (5) in order to evaluate the accuracy bound
(32) for larger values of t. In particular, in cases for which np(x) —n;„(—= positive const), it follows from
(31) that np~ n~;„for all x and t; thus (29), (30) and (26) are asymptotic to (kt) ' for large t, while the
right-hand side of (32) is asymptotic to a quantity of O(t ), t.e., —,'(kt) [(np(x —() ') —np

As an example of a practical application of (26), consider the diffusion and recombination of a very large
number %of free radicals which are distributed uniformly within a sphere of radius ro at t = 0,

r

3N/47rrp for (x~ =r «rp,
np(x) ='

0 for r &ro,

and have a distribution governed by (1) with (4) for t ) O.s The integral in (31) is evaluated in the case of
(33) to yield np = (3N/4m r p )~ where the positive function & =M (r, t) ( «1) is given by9

r i/2 2 2
rp r —rp+ r Dt (rp+ r) (rp —r)

2(D )I/2
+e

2(D )t/2
+

4Dt 4DT
t 4 4 ~

~ 4 4 4 4 ~

Since the quantities (29) and (30) are obtained as n = [(47rrp3/3N) + kt) t~ and n+ = [(4srrps/
3N/ ) + kt] ', an upper bound on the fractional error in (26) follows from (27) as

~n —n~//n «(n+ —n )/(n++ n ) = kt(l —~ ) [(87rrp/3N)+ kt(1+~ )] (35)

Subject to desired accuracy, the fractional error bound (35) delineates the (r, t) values for guaranteed useful-
ness of the approximation n =—n; high accuracy is attained for all r with t (( (8vrrp/3Nk) and for (r, t)
values such that ~ given by (34) is close to unity.
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