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Self-Consistency Effects in Quasilinear Theory: A Model for Turbulent Trapping
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Model equations are proposed in an attempt to take into account the self-consistency ef-
fects which invalidate the quasilinear theory in one dimension. The diffusion coefficient and
mode growth rate are found to be increased as compared with their quasilinear predictions.
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In this Letter we propose model equations in an
attempt to take into account the mode-coupling
terms which originate in the self-consistency of the
electric field and which invalidate the quasilinear
theory in one dimension. We restrict ourselves to
situations of weak turbulence that we define as fol-
lows: The nonlinear resonance width in frequency
space is negligible so that one may assign a well-
defined frequency &ok to a given wave number k; in
this case the validity conditions for quasilinear
theory were originally thought' to reduce to those
for Fokker-Planck (FP) equations, namely

max(r, /rf, r, /rz) « 1, where 7f and rz are
the characteristic times for nonlinear evolution of
the average distribution function and of the spectral
density; the quantity ~, denotes the correlation time
of the two-point correlation function of the electric
field as seen by a resonant particle, namely
7, = 1/A(teak —kv) = I/Ak~v~ —vg~, where Ak is
the width in k space of the unstable waves, v~ and

vg are the phase and group velocities of a charac-
teristic unstable mode. However, it has been re-
cently proved that the applicability of quasilinear
theory is restricted by an additional constraint of
small-field amplitudes, namely (k2D t') 't' « yg'
where D t' and yg' are the quasilinear diffusion coef-
ficient and mode growth rate; the latter condition
represents a drastic constraint upon the turbulence
level. In order to summarize simply why the quasi-
linear theory loses its validity in the domain
(k D~')' 3) yk', we define in the first part of the
Letter what should be a self-consistent FP descrip-
tion of the Vlasov-Poisson turbulence; we then
show that the quasilinear theory does not respect
some constraints imposed by the self-consistency of
the electric field; lastly we introduce our turbulent
trapping model as a self-consistent FP description
of the Vlasov-Poisson turbulence.

In FP theory the averaged distribution function

(f&)
= (f (x&, vt, t) ) evolves according to an equa-

tion of the form

B (ft) =B.,D(»):B., (fi)
with D(vt) = —,

'
(Avt/At) where the velocity in-

crease Avt=v&(t+At) —v&(t) is computed by in-
tegrating the equations of the particles' motion in
which the electric field is considered to be a sto-
chastic process. Similarly, the evolution of the
two-point correlation function

(f)f2) = (f(xi, v&, t )f (x2, vp, t))
is given by a FP equation of the form

(Bi+v-B. )(ftf2)

(2)

with

D;, (v, , v, ,x; —x, ) = —,
'

(Av;Av, /At);

from the latter definition there follow the relations
D;; =D(v;) and D&2=D2& D(v;) for (xt x2,
vt —v2) 0. By subtracting Eq. (2) from Eq. (1),
one obtains the equation of evolution for the ir-
reducible correlation function (5f,5f2) = (f,f2)—(f,) (f,) It reads

(B, + Tt2) (5f)5f2) =S„
with Tt2= v Bx —X;,B„D;,B„an.d,
x and v denote the relative coordinates x
=x) —x2 and v =v) —v2.

Let us now derive the constraints upon the dif-
fusion coefficients which are imposed by the self-
consistency of the electric field. First of all, the
averaging of the Vlasov equation yields the follow-
ing relation:

D(vt)B„,(ft) = —(q/m)(E(1)5f(1)) (4)

in which the correlation function (E(1)5f(1)) is
self-consistently computed by using the Poisson
equation as follows:

(5f(j)B„E(i))= (q/eo)fdv, (5f(j)5f(i)). (5)

The constraint (4) upon D (u) follows directly from
the Vlasov equation, i.e., from the conservation of
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the distribution function f (x, u, t) along the parti-
cles' orbits. On the other hand, as shown by
Boutros-Ghali and Dupree, an analogous expres-
sion may also be derived for D~2 if one takes into
account the conservation of f 2 along the particles'
orbits; from this latter property it follows indeed
that in the limit (x, u ) 0 one has exactly

8, (5f(1)5f(2))

—(q/m) [(E(1)5f(2))+1 2]6„(f),
with v+ = (vi+ u2)/2; in this same limit the opera-
tor Ti2 vanishes so that Eq. (3) yields

e, (5f(1)5f(2))
2D ii(u+, u+, x )(8„,(f) )'.

By matching the two limits, one immediately ob-
tains a second relation upon the diffusion coeffi-
cients, namely

Da(u+, v+,x )B„,(f)
= —(q/m) (E (i)5f(j)),

in which (E(i)5f(j)) is computed self-consistently
by use of Eq. (5). On the other hand, the mode
growth rate yk is provided by the dispersion relation
obtained by writing the Poisson equation in the
form

8„,8x2 (E(1)E (2) )

=(d/eo)'Jd id q)8f( )Bf()2));

the conservation of energy might then be written as
a third condition relating the diffusion coefficient
D(v) to the growth rate yk. We may therefore
conclude that the self-consistency of the electric
field is properly taken into account in a FP descrip-
tion of the Vlasov-Poisson turbulence only if at
least three constraints upon the diffusion coeffi-
cients are fulfilled, as given, namely, by Eqs. (5)
and (6) and by energy conservation.

We now summarize the proof of inconsistency of
the quasilinear theory in the regime (k2D't')'t3» yg' as given by Adam, Laval, and Pesme. As
is well known, the quasilinear approximation con-
sists in neglecting all the mode-coupling terms in
the equation of evolution of the spectral density. In
the Fokker-Planck description this approximation is
equivalent to the assumption that the electric field
behaves as a Gaussian process along the free orbits
when one computes the average (hv ); this as-
sumption has received the name of "quasi-

Gaussian" Ansatz and yields

D (.) =D"(.),
D» = D ( u+) cosk+ (xi —x2).

(7a)

(7b)

Equation (7b) is valid in the limit of small separa-
tion in v space, (v ( « [D~'(v+)/k+]'t3 where
k+ denotes the wave number corresponding to
resonant interaction with the particles of velocities
v&

—v2 —v+, k+ is namely defined to be the solu-
tion of the equation cok =k+v+. The validity of
Eq. (7b) is also restricted by a condition upon
separation in x space, ~x ~

&& l«, with l« = ~v+
—vg+~(k+D~') 'i, where u«+ =(8«)k/Bk+); the
quantity I„appears later on to play the role of a
characteristic length for correlation enhancement.
By using Di2 as given by Eq. (7b) one may exactly
solve Eq. (3) and compute the correlation function
(5fi5f2); inserting the latter into the dispersion re-
lation, one finds yk =yg' for (k2D't')'t3 « yg' and

yk = (A«)'i yg' in the opposite regime6; A« is a nu-
merical constant larger than unity which is given
later. Since the latter result does not respect energy
conservation, the authors of Ref. 4 concluded in
favor of a basic inconsistency of the quasilinear
theory, which can be rephrased as follows: The
zero-order modification of the growth rate demon-
strates the existence of mode-coupling terms which
yield a contribution of the same order of magnitude
as the quasilinear term; on the other hand these
nonnegligible mode-coupling terms contradict a
posteriori the initial assumption of statistics close to
Gaussian, thus invalidating the quasilinear values of
D and Di2 as given by Eqs. (7). Let us stress that a
standard propagator renormalization cannot solve
the problem since one may explicitly show that
there exists in the regime (k D t')'t3 » yg' an in-
finite class of mode-coupling terms which cannot be
properly taken into account by a propagator renor-
malization; these mode-coupling terms are associat-
ed with non-Gaussian effects which originate in
the self-consistency of the electric field. Similar
conclusions concerning the inadequacy of the
quasi-Gaussian theories (or test-field theory) for
describing the Vlasov turbulence have been reached
by DuBois from a formal analysis based upon
Kraichnan'ss direct-interaction approximation
(DIA); the interested reader is referred to the work
of Dubois and Espedal and Krommes and Kleva
for an introduction to DIA for Vlasov-Poisson tur-
bulence.

The rest of our Letter is now devoted to the re-
gime where the quasilinear theory breaks down,
i.e., (k D~')'t3 && yg'. Let us first display the two
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Ansatze which underly our model:
(i) We assume that the non-Gaussian deviations

do not invalidate the FP description of (f&) and

(f~f2). Concerning the evolution of (f[) this as-
sumption may be justified as follows: Dimensional
analysis shows easily that because of the self-
consistency imposed by the Poisson equation, the
statistical properties of the electric field are charac-
terized in addition to 7, by a second correlation
time v,' of the order of

——min[(yk') ', (k D«') ' ];
similar results have been found by various au-

thors. ' In the regime (k D«')'i')) yf', the in-

equality r,""/rf « I is satisfied so that the mode-
coupling terms invalidate only the quasilinear ap-
proximation for the diffusion coefficient D (v) and
do not bring into question the Fokker-Planck
description itself. On the other hand, as concerns
the evolution of the two-point correlation function

(ftfz), one cannot justify rigorously the use of the
FP equation (2) because the characteristic time of
evolution for (f&f2) is of the same order as r,'"";

our first Ansatz consists thus in assuming that the
evolution of (f&f2) may be correctly described by a
FP equation.

(ii) Our second Ansatz does not receive any

rigorous demonstration either but follows the usual
ideas of renormalization techniques: We indeed as-
sume that the effect of the mode-coupling terms is
to renormalize both D(u) and D[2 as compared
with their quasilinear values (7) in such a way that
the relation (7b) still holds; namely, we assume
that D~2=D (v+) cosk+(xt —x2), in which the dif-
fusion coefficient D (v) represents now the sum of
the quasilinear contribution and of the mode-
coupling terms. A more detailed analysis shows
that this latter Ansatz, and therefore our model, are
meaningful only if the waves are weakly dispersive
as prescribed by an inequality that we assume
henceforth, namely

(8'~k/Bk') [(k'D")' '/Iv —v I]' && yg'

in the case of the weak warm-beam instability, this
inequality is fulfilled for almost all the nonlinear
evolution.

We now yield the solution of the turbulent-
trapping model in its regime of applicability previ-
ously defined; first of all, the correlation function
(5f(l)5f(2)) may be exactly computed in terms
of the unknown diffusion coefficient D (v) by solv-
ing Eq. (3); one obtains

(5f(1)5f(2)) = r„(x , v )2D(v, )(8„,(f) )'
with

r«(x, v ) = [2k2+D(u+)] 'i f H~(v ) exp(ipk+x ) (8)

with

ddn(n )= Xdn „(—n)[3„(n)/x)f exp(ipP)exp(n(3n)din,
n 1

J~ „—n J„n n exp ip, V exp p, 3n dp, ,

where V=v [2D(u+)/k+] 'i and where J„(x)
denotes the Bessel function of order n. The solu-
tion (8) is valid for Iv I « [D(u+)/k+]'i and
Ix I « l«, otherwise the resonance broadening
predictions apply. The quantity ~«(x, u ) plays a
role exactly similar to the usual clumping time
v,[(x,u ) of the strong-turbulence case, i.e., the
case where the nonlinear width 5cok is of the same
order as &ok', in particular, in the limit
(x, u ) 0, r«(x, v ) exhibits the same loga-
rithmic divergence as ~,[(x,u ); in our case,
however, because of the hypothesis of weak tur-
bulence, r«(x, v ) is a periodic function of x
(in the limit x « l«) so that 7«(x, u ) exhibits
this characteristic divergence whenever the relative
coordinate x fulfills x = n 27r/k+ and Ix

&& l«, where n is an integer. This result may re-
ceive the following physical interpretation: A parti-
cle with velocity v interacts resonantly with those
modes whose wave numbers k fulfill
Ik —k(v)I & [k(v)'D(v)]''/IuI; these modes
form a wave packet characterized in the particle
moving frame by a correlation length of the order
of I«, therefore the motions of two particles with
velocities v~ and v2 are strongly correlated as long
as their relative distance in phase space is such that
Iv I

& [D(u+)/k+]'i and Ix I
& l« This pic.-

ture and the harmonic generation described by Eq.
(9) are very reminiscent of the trapping situation"
in which a wave packet would replace a mono-
chromatic wave; this remark justifies the terminolo-
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gy "turbulent trapping" that we use to describe our
model.

Inserting now {Sf(1)hf(2)) into Eq. (5) and
using Eq. (4) one obtains D (u~)/D~'(u~) = yk/yg',
on the other hand the growth rate yk is provided by
the dispersion relation which yields

where A« is a numerical constant given just below.
Combining the two latter results, one obtains the
values of the renormalized diffusion coefficient D
and growth rate yk, namely

tively good agreement with preliminary numerical
results. '
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=A« =1+ I8 X[J„'(n)/n]—2);
n 1

(9)

one finds numerically 3« = 2.2; the unit term in A«
stands for the quasilinear contribution and the fac-
tor in the braces represents the mode-coupling con-
tribution; Eq. (9) preserves energy conservation
and one may also check a posteriori that the self-
consistency condition (6) is satisfied. For com-
pleteness we may say that in the regime
(k2Dr')t 3 (( yg', our model leads to the same
equation as Eq. (9) in which A«reduces to unity, so
that one recovers the quasilinear theory as expect-
ed.

Pesme and Dubois have shown' that the
turbulent-trapping model differs in detail from the
DIA predictions for this problem by omitting most
of the characteristic polarization terms of the DIA;
they conjecture that nevertheless the turbulent-
trapping model, although predicting different corre-
lation functions, might yield in the limit e 0 the
same predictions as the DIA for the diffusion coef-
ficient and growth rate. Although not yet justified,
our model has, however, the merit of yielding an
explicit and consistent prediction for a net increase
of energy transfer between the waves and the parti-
cles where the increasing factor A« is in a qualita-
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