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Intrinsic Dynamical Instability in Optical Bistability with Two-Level Atoms
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Self-pulsing instability is reported in an experiment in which two-level atoms couple to a
single mode of a traveling-wave resonator to produce optical bistability. The threshold for
the onset of oscillation together with the characteristics of the dynamical state are described.
The self-pulsing instability observed is the analog in an absorbing system of the single-mode
laser instability.

PACS numbers: 32.80.Kf, 05.70.Ln, 42.50.+q, 42.65.-k

Of the many examples of optical phenomena that
display nonequilibrium phase transitions, one that
has received considerable attention in recent years
is optical bistability. ' 3 In addition to the bistability
associated with time-independent solutions, bifur-
cations leading to a variety of dynamical instabilities
have been predicted. 3 5 These "self-pulsing" insta-
bilities have their roots in corresponding insta-
bilities first analyzed for the homogeneously
broadened laser ~ and share a common physical
origin in that a strong intracavity field alters the ab-
sorption profile (gain profile in the case of the
laser) of the intracavity medium to produce amplifi-
cation at frequencies offset from that of the strong
field. This basic mechanism is intrinsic to virtually
all problems in optical physics involving the interac-
tion with an intense field. For problems involving
an optical resonator nonlinear dispersion must also
be considered in order to complete the specification
of the cavity boundary conditions.

The possibility of obtaining optical gain or ampli-
fication from a noninverted medium was long ago
recognized in the context of parametric amplifica-
tion8 and in the absorption spectrum of two-level
atoms driven by an intense field. 9 With regard to
optical bistability, dynamical instability due to this
intrinsic mechanism was first discussed by Bonifa-
cio and Lugiato' and by Ikeda, " and involved
longitudinal modes of the resonator. Single-mode
instability in passive bistable systems was treated by
Lugiato et al. ' and by Ikeda and Akimoto' and in-
cluded predictions of period doubling to chaos. "
An instability involving only a single resonator
mode is unique in optical bistability and in optical
systems in general in that the atomic and field vari-
ables change collectively on a time scale much
greater than that of the cavity round-trip time. As
shown by Lugiato et al. ', the occurrence of the
single-mode instability involves a delicate interplay
of nonlinear gain and dispersion in order that multi-
ple frequencies can coexist in a resonator with ef-

fectively only a single mode. A model based upon
"side-mode" gain alone does not suffice to explain
the instability.

Of the numerous types of instabilities predicted
to occur in optical bistability only a few have actual-
ly been observed. '5 '9 Of these there have as yet
been no observations of intrinsic instabilities for
continuous-wave excitation, where intrinsic has the
sense discussed above. '8 '9 We have observed
dynamical instability in a bistable system composed
of homogeneously broadened, two-level atoms
within a traveling-wave interferometer. Our experi-
ment corresponds closely to one of the canonical
theoretical models employed in quantum optics.
The system is operated with atomic and cavity de-
cay rates of comparable magnitude and in a domain
such that only a single resonator mode need be con-
sidered. By exploring regions of atomic cooperativi-
ty C greater than 20 times that for the critical onset
of (absorptive) bistability, we observe a complex
phenomenology associated with the instability, in-
cluding hysteresis in the appearance of self-pulsing,
precipitation (or instability of the self-pulsing solu-
tion), and self pulsing in the absence of hysteresis
in the steady-state characteristics.

In our experiment well-collimated beams of
atomic sodium intersect at 90' the plane of a high-
finesse interferometer, as shown in Fig. 1. The
essential aspects of the apparatus are as described
previously. 20 Optical prepumping of the atomic
beams produces a two-state transition (3 Si12,
F=2,mF=2 3 P3t2, F=3,m+=3) in the D2 line
of atomic sodium with an absorption width of 13
MHz. The dominant broadening mechanism above
the 10-MHz natural linewidth is transit broadening.
The interferometer is composed of two mirrors
each of radius of curvature 5 cm and with transmis-
sion coefficients Ti= T2= (3.0+0.2) &10 . The
injected laser is matched in transverse profile to the
fundamental TEMpp mode of the cavity with an ef-
ficiency of approximately 95'io. In the absence of
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FIG. 1. Illustration of the confocal optical cavity con-
taining well-collimated atomic beams directed out of the
plane of the page.
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the atomic beams (empty cavity) the peak transmis-
sion coefficient To of the cavity is (9.0 + 0.5)
x 10 2, and the cavity finesse F is 300 + 20.

Observation of hysteresis in the cavity transmis-
sion characteristics is made following the procedure
previously described. 20 We have been able to ex-
plore the range of effective cooperativity parameter
C, of 0 ~ C,(175, where for the cavity geometry
of Fig. 1, C, —= (a LF)/4n with n L as the
resonant atomic absorption for intensity loss in a
round trip. Over the range of C, we have recorded
the incident and transmitted switching powers P;
and P, of the hysteresis cycle in absorptive bistabili-
ty with zero cavity detuning. These powers are in
turn converted to scaled intensities through the re-
lations ' Y—= PIe/mcooI, and X—= P,/mcool, T2, with t
giving the intracavity enhancement and with
I, =7.3 mW/cm2. 20 Figure 2 shows the result of
our experiment for the onset and evolution of hys-
teresis compared to the prediction of theory in the
single-transverse-mode approximation, including
the small residual Doppler broadening. ' The ratios
of the input switching points in absorptive bistabili-
ty have been used to calibrate our relative measure-
ments of n L to absolute values of C, through a
single parameter over the entire range of C, . A
scaling of theory by a factor of 1.5, which is within
our experimental uncertainty for Y, produces satis-
factory agreement with experiment, as shown by
the dashed line in Fig. 2.

Armed with this information about the reliability
of theory as applied to the steady-state regime in
absorptive bistability for our experiment, we next
turn to an investigation of the dispersive regime.
For C, greater than about 50, and with small atomic
detuning 5 and large cavity detuning 6 of opposite
sign each in units of its respective half-linewidth,
self-pulsing is observed in the upper branch of the
hysteresis cycle. We have recorded the time depen-
dence of the output intensity L for a constant in-
cident intensity Yand for fixed (C„O,A), with the
cavity length held constant by locking the cavity
transmission to a Zeeman stablilized He-Ne laser.
The oscillation is sinusoidal with a frequency rang-
ing from 20 to 70 MHz and with a depth of modula-
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FIG. 2. Turning points Y for the steady-state hys-
teresis curve in absorptive bistability vs effective
cooperativity C, . 6 = 0 = 0. The full curve is the
theoretical result of Ref. 21, as discussed in the text.
This result is multiplied by 1.5 to give the dashed line.

tion as great as 7 to 1. The general behavior of the
self-pulsing instability for a variety of parameters
(C„H,6) is illustrated in Fig. 3. In this figure the
detection bandwidth is small ( —7 MHz) thus
reducing the amplitude of the observed self-pulsing
and allowing one to identify more clearly the
characteristics of the instability with respect to the
steady-state hysteresis cycle. Figures 3(a) and 3(b)
show an instability occurring on the upper branch,
where the arched segment of the trace represents
the region of self-pulsation. Figure 3(c) illustrates
the relationship of this oscillatory region to the bi-
stable region for a scan in 0 at approximately fixed
(C„h). Note that the instability occurs even in
the absence of hysteresis in the steady-state charac-
teristics. When the instability extends into the re-
gion of steady-state hysteresis, precipitation to the
lower branch has been observed. Figure 3(d) re-
veals a complex set of possible states on the upper
branch; there is definitely a novel type of hysteresis
associated with the appearance and range of stability
of these states that is not yet well understood. Note
that because of the small detection bandwidth,
self-pulsing may be occurring in regions of the
traces in Fig. 3 extending beyond the wide bands inI
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While we are in the process of determining the
precise boundaries of the self-pulsation in the
(C„H,A, X) space, several quantitative statements
can nonetheless be made. The minimum value of
C, for self-pulsation appears to be in the range of
50—60. As in Fig. 3 (c), for C, = 71 and
= —1.5 + 0.2 the instability in 8 starts at
0 = + 5 + 1 and extends to beyond 0 = + 20. A
change in the sign of 5 produces the same qualita-
tive behavior if the sign of 0 is also changed, indi-
cating that self-focusing in the I' = 2 I' = 3 transi-
tion does not play an important role. ' The fre-
quency of the oscillation is apparently determined
principally by the detuning 0; at a given 0, as L is
varied by more than 2 to 1 along the upper branch
over the range of instability, the frequency changes
by less than +10'/o. Note that the mean value of
the pulsation is displaced above the corresponding
steady solution, contrary to the situation found for
the multimode instability.

Our observations are in reasonable accord with
predictions for stability boundaries and frequencies
of self-oscillation obtained from an analysis of the
Maxwell-Bloch equations for the single-mode insta-
bility in optical bistability. ' 3 That our system is
operated in the single-mode regime is evidenced by

FIG. 3. Behavior of the self-pulsing instability. (a),
(b) Photograph and explanatory drawing of the hysteresis
cycle showing the instability as an arch separated from
the otherwise straight-line segment of the upper branch
(C, = 155, b, = —0.7, 0 = 13, and 0 ~ X~ 530). (c)
Evolution of the instability as a function of 0 for approxi-
mately constant 5, C, = 155, and Y ( 1.3 X 10' (//, bi-
stability; Q, instability;

~ ~, no bistability, no instability).
The arrow marks the position of the photograph in (a).
(d) Photograph of the hysteresis cycle for C, = 157,
5 = —0.5, 0 = 15, and 0~ X~ 320. Several states are
possible on the upper branch and are connected by a
complex hysteresis pattern as the incident field is swept
up and down.

noting that (1) the free-spectral range of our cavity
is large (1.5 GHz), (2) the detunings 0 are small
(0 = 10 corresponds to a frequency detuning
hp = 25 MHz), (3) the Rabi frequencies fI are
small over the regions of the upper branch in Fig. 3
(X=100 corresponds to a Rabi frequency II/2~
= 80 MHz), and (4) K, y~, and yii are of the satne
order (K/y ~

= 0.4, y ii/y j = 1.6, and y ii
= 2m

X107/sec). While period doubling is predicted by
the plane-wave theory, ' in a Fourier spectrum of
the pulsation we have seen no evidence for subhar-
monics. We are attempting to extend our measure-
ments to yet higher values of C, in search of other
dynamical states.

In summary, we have reported observations of
intrinsic dynamical instability in a passive bistable
system with cw excitation. The operating regime of
our experiment corresponds to that appropriate for
the single-mode instability in a homogeneously
broadened system, which is the counterpart in an
absorbing system of the single-mode laser instabili-
ty. Alternatively, the oscillation can be viewed as a
result of amplification in four-wave mixing but with
the important restrictions imposed by the cavity
boundary conditions and by the strong coupling of
cavity and atomic dynamics. The observed self-
pulsing is robust, occurring over wide ranges in the
parameter space ( C„O,b„,X) with a complex
behavior that includes hysteresis and precipitation.
A preliminary comparison with theory supports our
interpretation of the phenomenon.
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