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Quantum Limitations for Chaotic Excitation of the Hydrogen Atom
in a Monochromatic Field
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We numerically study the excitation mechanism of the hydrogen atom in a microwave field
and show that quantum mechanics imposes limitations to the classical chaotic diffusion. In
particular a multiphoton resonance pattern has been found. We suggest that a direct labora-
tory experimental verification of these phenomena should be possible.

PACS numbers: 03.65.Sq, 05.40. +j

To explain the results of experiments'2 on ioni-
zation of highly excited hydrogen atoms by a mi-
crowave monochromatic field, a new mechanism of
ionization has been suggested, namely, a quantum
diffusion of the electron over the unperturbed ex-
cited states. Since in actual experiments only initial
states corresponding to high values of the principal
quantum number (n =45, 46) were examined, a
classical description of the problem was given4 and
the numerical results obtained were in satisfactory
agreement with the experiments in Ref. 1. In the
work of Meerson, Oks, and Sasorov' the essential
role of classical chaotic motion was stressed and the
condition for the onset of diffusive behavior has
been derived. However, the numerical experiments
with simple quantum models 9 have shown that
the quantum effects lead to a limitation of classical
chaotic excitation. Also, computer simulations of
the electron excitation from extended states, i.e.,
states with parabolic quantum numbers ni &) n2—1 (or nt « n2), have revealed that diffusion
over levels is much slower in the quantum case
than in the classical case. ' Moreover, besides the
diffusion, multiphoton resonances with the number
of photons k —10 were found to play a significant
role in the excitation.

This paper is devoted to a numerical study of the
dynamics of the hydrogen atom excitation from
states with n& )) n2 —1 and m = 0. As these states
are very extended along the field direction we make
use of the one-dimensional model developed and
described in detail in Ref. 10. The Hamilton opera-
tor of the model is"

0= —,
'

p,' —I/izi+ ez cos(tot), (1)
where e and ~ are the field strength and frequency
in atomic units. In our computations we used initial
conditions corresponding to a single excited unper-
turbed level with np=45, 56, or 66. The total

number of levels taken into account was about 200
in a typical range 20~ n (226.

The accuracy of the numerical results was care-
fully checked by varying the total numbers of lev-
els. For comparison we integrated the classical
equations of motion for 250 trajectories with the
same initial value of the action np and phases
homogeneously distributed over the interval
[0, 2n. ]j. The main computations have been carried
out on a CRAY-1S computer.

The quantum limitation on chaotic excitation was
the most interesting phenomenon observed in our
numerical experiments. Consider, for example, a
typical case with np = 66, cop = co np3 = 1.2, and
ep= enp = 0.03. Here, in the classical limit, the res-
onance overlap condition is fulfilled, which leads to
a diffusive excitation of the electron. '2 In order to
investigate the extent to which diffusion also occurs
in the quantum case we considered the second mo-
ment,

M, = ((n —(n) )')/np2 —=((An)' )/npz,

of the distribution function f„over the energy lev-
els. %e found that in the quantum case the depen-
dence of M2 on the time is qualitatively different
from that in the classical limit. Indeed, the quan-
tum moment M2 remains close to the. classical one
during a few periods of the field only; then it oscil-
lates about a stationary value whereas the classical
moment continues to grow rapidly (Fig. 1). This
confirms the previous results of Ref. 10. An in-
crease of the peak value of the field to up=0. 04
leads to a sharp rise in the quantum moment M2
which continues during the whole computation
time. However, the growth rate is definitely small-
er than in the classical case (Fig. 1) . Similar
phenomena were also observed for different values
of the parameters; for example, at cop= 1, np=66,
ep = 0.03—0.04 and np = 45, 6p = 0.04—0.05.
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FIG. 1. Dependence of the second moment M~ on
time r =cut/2m measured in number of field periods.
Quantum case: np=66, o)p=1.2, and (curve I) E'p=0. 03
and (curve 3) ep=0.04. Curves 2 and 4 correspond to
the classical limits of curves 1 and 3, respectively.

To get some insight into the nature and mecha-
nism of the sharp increase in M~ with ep (Fig. 1) we
turned to the distribution function f„(r), where
r = cut/27r An example. of f„averaged (to suppress
the fluctuations) over forty values in the interval
80 & r ~120 for the case ep=0.03 of Fig. 1 is
shown in Fig. 2. Most of the probability is concen-
trated within a peak whose maximum remains at
the initial level n = np in all cases. Even though the
moment Mq keeps growing, the width of the peak
increases only up to a stationary value. Such a
behavior corresponds to the so-called quantum lo-
calization in a classically chaotic system which was
studied in the simple rotator model ' and then
confirmed in other models' ' as well ~ The peak
shape can be approximately described by the simple
exponential dependence

f„~exp( —2in —npi/t), (2)
in agreement with the result obtained for the rota-
tor model. '6 The order of magnitude of the locali-
zation length I can be estimated by the simple
method described in Sec. 3.4 of Ref. 7 which gives

I = o.D„—= n ((b, n)~) =nn(~) . (3)~ dM&

d7. dT

The factor n is close to & according to numerical
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FIG. 2. Distribution function f„averaged over forty
values within the interval 80 « ~ 120 for the quantum
case I of Fig. I (full line) and for the classical case 2 of
Fig. I (dashed line). n, is the classical chaos border. Ar-
rows are drawn with equal spacing DE=co (in energy
scale), one arrow being attached to the empirical peak at
n =142.

(sb)

ep & ~p7t'/2 jn() ——e,"1,

Eq. (Sb) has no solution, which means delocaliza-
tion, i.e. , indefinite diffusion, and «q(') is the quan

data on the rotator model (see Refs. 9 and 16).
Equation (3) holds for homogeneous diffusion

only (D„=const). However the diffusion coeffi-
cient for the model (1) in the quasilinear approxi-
mation depends on n "'.

D„=2e'n'/~7t'np (4)
(This expression has also been verified by Jen-
sen. '7) Nevertheless, for sufficiently small ep, / is
also small and n = np so that Eq. (3) still holds.
Yet, for large ep, n grows rapidly which leads to
delocalization, and to unlimited diffusion with a
rate close to the classical one. This phenomenon
was investigated and explained for a simple model.

The analytical expression for the dependence of
localization length on the parameters can be derived
also in the present case and has the following form
(the related theory will be published elsewhere):

t = 0.4(cup7t3/e') u (5a)
where u is the smaller of the two solutions to the
equation

~p 9 (2 —u) (0& u & 1).
tpnp 4 u 1 —u
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turn delocalization border O. f course, this holds if ep

exceeds also the classical chaos border, '2 e,
= 5'p cup

' . Notice that the critical value (6) corre-
sponds to the condition I —no with l given by Eq.
(3). Indeed, for l ) np the increase in the diffusion
coefficient with n needs to be taken into account.
In Ftg. 3 the analytical expression (5) is compared
with numerical data obtained in the present work.
The rather large scattering of points about the
theoretical curve may be explained, at least partial-
ly, by the regions of stable classical motion which
still survive for the given values of the parameters.

The observed fast growth of the moment Mz in
Fig. 1 cannot be explained by the phenomenon of
delocalization since the corresponding values of eo
are subcritical. Instead, it is apparently related to
the broad multiphoton "plateau" in the distribution
function (Fig. 2). This plateau has an evident reso-
nance structure. The spacing of the unperturbed
energy between principal peaks is approximately
equal to the frequency of the external field. Twelve
such peaks, equally spaced in energy, are fairly clear
in Fig. 2. In some cases several series of equally
spaced peaks were observed; for example, at no
= 56, cup=0. 8, and op=0.03, there are three such
series.

The total probability of states within the plateau
can be roughly estimated by the excitation probabil-
ity Wt 5 into the states with n ~ [1.5np], where the
square brackets denote the integer part. The in-
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FIG. 3. Dependence of the localization length l on the
model parameters in log-log scale. The solid curve corre-
sponds to the theoretical expression (5); points are calcu-
lated from numerical data; the vertical dashed line shows
the quantum delocalization border (6).

crease in ep from 0.03 to 0.04 changes this probabil-
ity, at r =80, from 4.1&&10 4 and 3.6&&10 2 and
enhances the multiphoton plateau by two orders of
magnitude, which explains the sharp growth of M2
in Fig. 1. The field dependence of the excitation
probability can be approximately described by the

2kE
empirical power law 8't 5

= (Ep/eg) with kg = 7.8
and e =0.05. This kE value is considerably small-
er than the number of photons required for the
direct transition from np to n = 1.5np which is ap-
proximately equal to kD = [5np/18&op] + 1 = 16.
Similarly, for np= 45 and cup= 1 the quantities are
kE= 3.9, e, =0.063, kD =13 and for np=66 and
cup = 1 they are kE = 7.8, e, = 0.045, kD = 19.

The results obtained here suggest the following
qualitative cascade picture of the atomic excitation.
First, the initial state spreads (Fig. 1) until the lo-
calization width i is reached [see Fig. 3 and Eq. (5)].
Then one or a few multiphoton transitions (their
number determines the number of equally spaced
series) transfer the localized excitation onto the
higher levels. Here the field is strong enough to
provide one-photon transitions with a high proba-
bility and this results in the appearance of a series
of equidistant peaks (Fig. 2).

It is interesting to note that no multiphoton ef-
fects were observed in the rotator model6 7 (for ir-
rational T/4'). This is apparently related to a dif-
ferent structure of the unperturbed spectrum as
well as to analyticity of the perturbation which im-
plies an exponential decrease in its matrix elements.
We note that the harmonic time dependence of the
perturbation in (1) is important; for example, re-
placement of the latter with a delta function'5 may
qualitatively change the multiphoton processes.
The role of the latter in another model was also dis-
cussed in Ref. 14.

The one-dimensional model investigated here
does not take into account the change in the second
quantum number n2 As shown .in Ref. 10 the ma-
trix element related to the transition with b, n2 1is-—
smaller than that for Ant =1 by a factor of n2/n,
and the corresponding probability is (n2/n)2 times
less, while the frequencies in both cases are approx-
imately the same, as a result of the Coulomb de-
generation. Therefore, as long as n2 « n the in-
fluence of the second dimension on the multipho-
ton transitions appears to be small. Yet, its impact
on the quantum limitation of diffusion may be sig-
nificant. Indeed, as in the stochastic region n2 is
diffusing at the rate D„,= D,~(n2/n), ' the
number of excited levels is N = AntA n2 —D,~ngnr
(n2& 0). According to Refs. 7, 10, and 13 the
condition for delocalization is then N ) r Hence, .
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from (4) the two-dimensional delocalization border
is at

Thus, the second dimension sharply decreases
the delocalization border. For n2 —n and mp —l
the critical value e~ —np ', which, for np= 60 is
approximately equal to the classical chaos border.
This may explain the agreement with experiment of
the classical computations in Ref. 4. However, for
n2 —1 the border (7) is of the same order as in the
one-dimensional case (6). Therefore one may ex-
pect that for extended states (n2 —1) and for a
smaller field than (6) the localization will persist in
the two-dimensional case as well and can be ob-
served experimentally.

Another effect omitted in our numerical experi-
ments is transitions to the continuum. An indirect
check of the importance of this process can be ob-
tained as follows. The numerical code used here
causes a decrease in normalization 8'at a rate pro-
portional to (en At), where b, t = 27r/toL is the in-
tegration time step and L is the number of steps per
period of the external field. This "artificial damp-
ing" results in a stationary probability flow in re-
gions of high n values. We have found that even
for strong fields (for example, ep=0. 05, cop= 1,
np = 45, L = 800, n,„=211) this flow is fairly
small (dW/d~ = 4x 10 ), and does not affect the
distribution f„. This suggests that for a low multi-
photon plateau the transitions into the continuum
would not change the whole excitation significantly.

We are greatly indebted to I. Guarneri, F. Vival-
di, J. Ford, and F. Izrailev for stimulating discus-
sions and useful suggestions.
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