Comment on "Spectroscopic Evidence for Localized and Extended f-Symmetry States in CeO_2 "

In a recent Letter, Wuilloud, Delley, Schneider, and Baer (WDSB)¹ presented combined x-ray photoelectron spectroscopy and bremsstrahlung isochromat spectroscopy (BIS) studies of CeO₂ focusing on the possibility of valence mixing in this insulating compound, which has been a controversial issue for recent years.^{2–4} They concluded that in CeO₂ *f*-symmetry states exist as extended states as calculated by band theory⁵ and that valence mixing as proposed by the cluster model of Fujimori with configuration mixing⁴ is definitely excluded. They argued that, whereas the valence band contains an admixture of *f* symmetry ($n_f^h \neq 0$), the occupancy of localized 4*f* states n_f^I is zero.

In this Comment, I would like to point out that their results are consistent with the valence mixing of Ref. 4 rather than excluding it. I note that the cluster model⁴ and the band model⁵ have given quite similar physical pictures in spite of the very different approaches as far as the ground state is concerned. While the band model considers the Ce 4f-O 2p hybridization in a one-electron picture, the cluster model considers it in a configuration-mixing framework.⁶ In both cases, 4f electrons are delocalized in the sense that they lose localized magnetic moments and participate in chemical bonding. In fact, their "extended f-symmetry states" can be regarded as linear combinations of O 2p and Ce 4fatomic orbitals as can be seen from the shape of the wave function in Ref. 5. Therefore, the conclusion of WDSB that $n_f^h \neq 0$ and $n_f^l = 0$ is fully consistent with the cluster-model results: The result of Ref. 4 that CeO₂ is mixed valent with $n_f \sim 0.6$ corresponds well to $n_f^h \sim 0.5$ used by WDSB in their model calculations.¹

Then, which is a more relevant definition for the 4f occupancy, $n_f = n_f^l + n_f^h$ or n_f^l ? Core-level⁷ and valence-band⁸ photoemission measures n_f rather than n_f^l . So-called tetravalent compounds such as CeRh₃ and CeRu₂, for which $n_f^l \sim 0$, have been assigned the 4f number of ~ 0.8 .⁷ The 4f occupancy measured by Compton scattering⁹ also corresponds to n_f , as this experiment measures spatial electron distribution and does not distinguish localized, magnetic 4f electrons, and 4f electrons hybridized with conduction electrons. Generally it is not possible to separate unambiguously n_f into n_f^l and n_f^h in metallic Ce systems both experimentally and theoretically. Therefore we believe that n_f is a parameter more relevant to recent arguments on the 4f

occupancy than n_f^l , and in this sense CeO₂ should be regarded as mixed valent, although the chemical term "valence" might be confusing.

Finally, the BIS spectrum of CeO₂ has shown an intense $4f^1$ peak and no clear $4f^2$ peak, which WDSB considered to be a strong indication of unoccupied localized 4f states. WDSB used a large 4fvalence (conduction) band hybridization parameter in their Gunnarsson-Schönhammer (GS)¹⁰ model calculations ($N_f \Delta = 5.6$ eV as compared to V or $N_f \Delta = 0.5 - 2.5$ eV used in the cluster calculations⁴ and previous GS model calculations^{7,10}). As a result of the large hybridization the intense BIS peak is an admixture of $4f^1$ and $4f^2$ configurations with comparable weight rather than pure $4f^1$, and cannot be assigned to localized $4f^1$ states. Alternatively, the intense " $4f^1$ " peak might be explained by a formation of 4f band in the BIS final state,¹¹ which cannot be described by single-Ce-ion theories such as the GS and cluster models. In any case, unoccupied 4 f states are fairly extended rather than localized.

I would like to thank Professor J. H. Weaver for encouragement and the National Science Foundation for support through Grant No. DMR 82-16489.

Atsushi Fujimori^(a)

Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis, Minnesota 55455

Received 27 August 1984

PACS numbers: 71.70.Ms, 79.20.Kz, 79.60.Eq

^(a)Permanent address: National Institute for Research in Inorganic Materials, Sakura-mura, Niihari-gun, Ibaraki 305, Japan.

¹E. Wuilloud et al., Phys. Rev. Lett. 53, 202 (1984).

²K. R. Bauchspiess *et al.*, in *Valence Fluctuations in Solids*, edited by L. M. Falicov, W. Hanke, and M. B. Maple (North-Holland, Amsterdam, 1981), p. 147.

³P. Wachter, in *Valence Instabilities*, edited by P. Wachter and H. Boppart (North-Holland, Amsterdam, 1982), p. 145.

⁴A. Fujimori, Phys. Rev. B 28, 2281, 4489 (1983).

⁵D. D. Koelling *et al.*, Solid State Commun. **47**, 227 (1983).

⁶J. H. Hubbard *et al.*, Proc. Roy. Soc. London **88**, 13 (1960).

⁷J. C. Fuggle *et al.*, Phys. Rev. B 27, 7330 (1983).

⁸D. J. Peterman et al., Phys. Rev. B 27, 808 (1983).

⁹U. Kornstädt et al., Phys. Rev. B 21, 1898 (1980).

¹⁰O. Gunnarsson *et al.*, Phys. Rev. B 28, 4315 (1983).

¹¹J. W. Allen *et al.*, Phys. Rev. B 28, 5327 (1983).

© 1984 The American Physical Society