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ground States of Constrained Systems: Application to Cerium Impurities
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We present an extension of the density-functional theory to the lowest states compatible
with arbitrary constraints. A broad class of interesting excitation problems connected with
charge and magnetization fluctuations can be treated by such a method. We demonstrate the
usefulness in ab initio calculations for Ce impurities.
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In recent years there have been several efforts to
generalize density-functional theory (see, e.g. ,
Lundqvist and March' ). Of special interest to us is

the work of Gunnarsson and Lundqvist who
showed that in addition to the true ground state also
the lowest states for each symmetry can be calculat-
ed. In this note we want to generalize this approach
and show that by using more general constraints in-

teresting problems connected with charge and mag-
netization fluctuations in solids can be treated. We
will demonstrate the usefulness of this approach in
model calculations for Ce impurities in metals.

As a first example of a more general constraint
we examine charge fluctuations within a certain
volume Vin the solid. Especially we are interested
in the lowest energy E(N) compatible with the con-
straint that the volume V contains exactly N elec-
trons. This energy may be interpreted as the
ground state of the constrained system. If one
takes the constraint into account by a Lagrange
parameter u, the lowest energy E(N) is given by

E(N) =min[E(n( r ) }

+u(Jt d'r n(r ) —N}], (1)

where E(n( r ) } is the usual functional, the abso-
lute minimum of which represents the ground-state
energy. By minimizing (1) with respect to n( r)
we obtain in the Kohn-Sham equations an addition-
al potential v, being constant within the volume V

and zero otherwise. The well depth v has to be ad-

justed such that the resulting charge density n„( r )
gives exactly N electrons within the volume V. In-
stead of calculating E(N) from E (n„( r ) } we can
also calculate directly the energy difference with

respect to a reference state No, e.g. , the ground
state, by taking advantage of the Hellmann-
Feynman theorem

dE(N)
dN

or hE(N) = —f dN'u(N'). (2)

Thus the knowledge of u(N') is sufficient to calcu-
late the excitation energy AE. Physically we can
view the potential v as the "force" necessary to
constrain the system to the desired configuration
and AE as the resulting internal "strain energy" of
the system. For the ground state No the force v

vanishes, since dE/dN =0. Moreover, for small de-
viations AN =N —No, the potential v will in gen-
eral be proportional to /1. N so that AE —(/).N) .

The constraint chosen in (1) or (2) can be quite
arbitrary. In this context it is interesting to
remember Levy's definition of the functional
E(n( r ) } as the lowest energy subject to the con-
straint that the wave function gives the required
charge density n( r ). Thus we are going only one
step down in the minimalization by choosing less
restrictive constraints the form of which are defined
by the physical problems studied. If for instance for
a discrete system we constrain the symmetry of the
wave function, we obtain the theorem of Gun-
narsson and Lundqvist for the lowest energies for
each symmetry. If on the other hand we constrain
the population of a certain atomic orbital, we can
rederive Janak's formula e; = BE/Bn;, or, in the in-

tegrated form, Slater's transition state. Thus our
method represents a generalization of these ideas to
continuous systems.

Of more interest than variation of the total charge
N is the variation of the local d charge in a single
cell of a transition metal or the local f charge in a
rare-earth metal. The appropriate functional is then

E(Nf) =min[E(n( r ) }

+rrr)f d r rrr) r ) —))'r)I. (3)

Here nf( r ) is the f-charge density which should be
constrained to a total f charge of Nf electrons
within the local Wigner-Seitz sphere V, . The
minimalization leads to a constant projection poten-
tial vf acting only on the l =3 angular momentum
components of the wave function in the considered
Wigner-Seitz sphere. Since the constraint affects
only the f charge in the considered cell, the spd
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electrons in this cell as well as all other electrons in
the neighboring cells relax in order to minimize the
energy, describing in this way an optimally screened
excitation. The corresponding energy difference
should be directly connected with the screened
Coulomb matrix element U. For instance, in the
atomic limit U is given by the sum of AE for the
Nf +1 and Nf —1 configurations.

Such constrained ground-state calculations should
be of special significance for magnetism and mag-
netic interactions. Because of the work of Hub-
bard and others it is generally assumed that in
metallic magnets thermal fluctuations of the local
moments vary slowly in time so that the static ap-
proximation appears to be a natural starting point.
In a recent paper Small and Heine' have pointed
out how, in the frame of the Hartree-Fock method,
ground-state calculations with artificial exchange
fields can be effectively used to calculate exchange
interaction energies. Here we want only to show
that analogous but more realistic calculations can be
done within density-functional theory by introduc-
ing the corresponding constraints.

For instance, in order to calculate longitudinal
fluctuations of the local moment M in a cell Vone
has to calculate

E(M) =min[E {n( r ),m( r ))

+H{jt m( r )d r —M)]. (4)

Physically H represents a magnetic field, being con-
stant in the cell V and vanishing outside of V.

Williams" has recently studied such longitudinal
fluctuations in Invar systems. His method of intro-
ducing two Fermi energies EF- for both spin direc-
tions is a special case of the above approach if V is
identical with the crystal volume (EF+-=E„+H).
If also the direction of the moment is changed we
have to replace the quantities m ( r ), M, and H in

(4) by vectors. Especially interesting is the case
where only the direction m ( r ) is fixed whereas the
absolute magnitude of the moment is allowed to re-
lax, e.g. , m ( r ) = e within the cell V. However,
this constraint leads to problems in more complicat-
ed cases when one constrains the directions in vari-
ous cells to different values e&, e2, . . . . The mag-
netization vector m( r ) being a continuous quantity
would then vary discontinuously at the cell boun-
daries. Therefore a less restrictive constraint affect-
ing only the average direction in cell V should be
more appropriate:

E(e) =min[E {n( r ), rn( r ))

+H(f d'rm( r ) —e(f m( r )d'rl} l.

(5)

In the Kohn-Sham equation one obtains in cell Van
additional field h =H —e(e H), which is ortho-
gonal to e so that H also can be assumed to be per-
pendicular to e without loss of generality. This is

due to the fact that in (5) the energy is already
minimized with respect to longitudinal fluctuations.
By means of the Hellmann-Feynman theorem the
change dE of the energy due to a directional change
de leads to the classical result dE = —H(e)M(e)

de, where Mis the total local moment. For finite
rotations one has to integrate over all intermediate
rotation angles.

The generalization to the case of many interacting
moments with longitudinal and transversal fluctua-
tions is obvious. In each cell one has to introduce
constraining fields H&, . . . , Hz which have to be
adjusted in order to fix the local moments to the re-
quired values M), . . . , M)v. The resulting energ~
E(M&, . . . , M~), calculated from dE = —g;H;

dM;, can be considered as an effective Hamiltoni-
an describing only the contracted degrees of free-
dom of the local moments. For instance, for small

deviations 4M;=M; —M,. from the ground state
the energy will be quadratic in bM; ':

3 E = —,
' $ J;i bM; AMi. (6)

The exchange-coupling constants J;, are related to
the constraining fields H, by H;= —$,J;, b,M, ,
i.e., the H field of cell i has to balance the internal
exchange fields J;i 4M, arising from the moment
changes in the neighboring cells j.

Another interesting application of our method
would be the calculation of the energy difference
between two stable magnetic configurations. For
instance, for two magnetic impurities in a noble-
metal host usually both the ferromagnetic as well as
the antiferromagnetic configurations are stable.
Both can be continuously transferred into each oth-
er by, e.g. , the application of a staggered longitudi-
nal field on the ferromagnetic configuration which
induces a difference AM=Mi —M2 between the
two moments. By increasing AM finally the anti-
ferromagnetic solution is reached. One might as
well apply transversal fields of opposite sign on both
impurities which would rotate the moments from
ferromagnetic to antiferromagnetic alignment.

In all of the above applications the Hellmann-
Feynman theorem is proposed to calculate the
relevant energy differences. Whereas it is well
known that this is problematic for the calculation of
real forces, it should be much less so for the above
cases. For real forces the anisotropic parts of the
charge density in a given cell play a decisive role,
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which are not calculated completely self-consis-
tently in a muffin-tin or atomic sphere approxima-
tion, whereas in all of the above examples only
"isotropic" quantities like the local charges or the
local moments are needed, which can be calculated
much more reliably. Therefore corrections for
non-self-consistency' should be small.

In the following we will illustrate the method of
constraints in ab initio calculations for Ce impurities
in metals. The calculations are based on the local
density approximation and a muffin-tin description
of the atomic potentials. The embedding of the im-

purity into the host is described by Korringa-
Kohn-Rostoker Green's functions which are con-
structed from a self-consistent host band structure.
The potentials of the impurity and the neighboring
host atoms are then calculated self-consistently.
For details about the method we refer to Podloucky
et al. ' and Braspenning et al. ' First we want to
study the change AE(Nf) of the energy by chang-
ing the f occupation Nf of the Ce impurity. A
semirelativistic calculation yields Nf =1.18 for Ce
impurities in Pd and 1.25 for Ce in Ag. The foccu-
pation in the impurity cell is then changed by a
Lagrange potential uf as in (3). Figure 1(a) shows
the dependence of vf on ANf as determined self-
consistently. We obtain a nearly linear dependence
which upon integration then yields an almost quad-
ratic dependence of the energy change AE on bNf.
If the Coulomb interaction U is estimated from
U= AE(Nf +1) +E(Nf —1), we obtain values of
6.6 eV for Ce in Ag and 8.1 eV for Ce in Pd. These
values should be compared with experimental esti-
mates of 6 eV for elemental Ce, ' and with a value
of 5 eV from renormalized atomic calculations.

The second example is connected with changing
the form of the f wave function of Ce. Schluter
and Varma' have proposed a bistability model for
Ce based on a simplified calculation which suggests
the existence of two stationary solutions of the 4f
wave function, the normal one and a second one
with a maximum outside the Ssp shell. Bringer'
has disputed this model by showing that for atomic
Ce the energy increases monotonically with the ex-
tent of the 4f wave function. He parametrizes the
4f wave functions such that the second moment
(r ) is fixed and then minimizes the Hartree-Fock
energy by determining the remaining parameters.
In the following we extend these calculations to Ce
impurities in Pd. Analogously to Bringer we con-
strain the second moment of the f density on the
impurity site:

l, {f r~n~(r}d~r —(r~}f nf(r}d~r}. (7}
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FIG. l. (a) The Lagrange parameter wf, which con-
trols the foccupation Nf, as a function of ANf for Ce im-
purities in Pd and Ag (semirelativistic calculation). (b)
The energy difference KE(Nf) vs ANf for Ce in Pd and
Ag.

This leads to a parabolic potential l{.(r —(r2)) in
the Kohn-Sham equations which, for A. & 0, repels
the felectrons in the inner region r ( (r ) and at-
tracts them to the outer region r' ) (r ). The en-
ergy difference AE((r )) is again calculated from
the Hellmann-Feynman theorem and is plotted in
Fig. 2 versus (r ). No second minimum is found.
Note that contrary to the atomic calculation the f
occupation Nf is not fixed, but allowed to relax in
order to minimize the energy. As shown in Fig. 2
(right-hand scale) Nf strongly decreases with in-
creasing (r2). This indicates that it is energetically
more favorable to promote the f electrons into the
conduction band than to shift them to the region
outside the Ssp shell. More details about the present
calculations will be published elsewhere.

In conclusion, we have presented an extension of
density-functional theory to the lowest states com-
patible with some arbitrary constraints. We have
demonstrated that such constrained ground-state
calculations can give interesting information about
excitation properties, especially about charge and
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FIG. 2. The energy change AE (left-hand scale) and
the f occupation N& (right-hand scale) vs the second mo-

ment of the f-charge density for a Ce impurity in Pd
(nonrelativistic calculation) .

magnetization fluctuations in solids.
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