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Landau-Lifshitz Equation of Ferromagnetism: Exact Treatment
of the Gilbert Damping
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In the Landau-Lifshitz equation which describes the evolution of spin fields in nonequi-
librium continuum ferromagnets, by stereographic projection of the unit sphere of spin onto
a complex plane, it is shown that the effect of the Landau-Lifshitz-Gilbert damping term is a
mere rescaling of time by a complex constant. Consequently, for any given undamped
motion of spatially regular and/or irregular spin structures, the nature of the damping can be
analyzed exactly in a simplified manner.
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The Landau-Lifshitz (LL) equation' which
describes the evolution of spin fields in continuum
ferromagnets bears a fundamental role in the
understanding of nonequilibrium magnetism, just
as the Navier-Stokes equation does in that of fluid
dynamics. In the context of nonlinear dynamics, it
is being realized that the LL equation possesses fas-
cinating geometrical properties and that its special
versions without damping in (1+1) dimensions are
completely integrable soliton systems. 4 7 Here we
wish to show the astonishing fact that the effect of
Landau-Lifshitz-Gilbert or simply the Gilbert,

damping' is just a rescaling of the time variable t
by a complex constant, so that for every given solu-
tion of the undamped LL equation in any dimen-
sion the exact solution of the fully damped version
can be given straightforwardly. The way in which
we demonstrate this result is by projecting the unit
sphere of spin S( r, t) stereographically onto a com-
plex plane of to( r, t) and then rewriting the LL
equation in terms of the latter variable.

It is well known that the normalized form of the
Landau-Lifshitz equation for the ferromagnetic spin
system is of the form'

t1S ( r, t )/Q t = S x F«—XS x (Sx F,«) = S x F,«+

where S =—(S", S», S') and S = 1, and A, is a dimen-
sionless Gilbert damping parameter. In Eq. (1) the
effective field Feff typically contains contributions
from exchange interaction, crystalline anisotropy,
magnetostatic self-energy, external magnetic fields,
thermal fluctuations, etc. Equation (1) can also be
written in the alternative Gilbert form as

BS( r, t)/Bt= S x F,« X(Sx BS/Bt). — (2)

One can easily check that Eqs. (1) and (2) are
identical to within a constant scaling factor 1+A. of
the time variable t. We will use both the forms in
Eqs. (1) and (2) in the following analysis.

To begin with we consider a typical form of F,ff,
corresponding to a uniaxial anisotropic Heisenberg
ferromagnet in external magnetic fields:

F,«= V S —2A (S n) n+ p, B,
n = (0, 0, 1), (3)

where A is the anisotropy parameter (A ) 0, easy

&~F.« —(S Fc«)S~.

plane; A ( 0, easy axis), p, is the gyromagnetic ra-
tio in Bohr magnetons, and B=B(t) is the external
magnetic field. It may be noted that in the un-
damped case Eq. (1) or (2) for Eq. (3) may be
derived starting from a field Hamiltonian

H= dr —, O'S +23 S n —2pB S,
with suitable Poisson brackets for the spin
fields. 2 4 8

In the undamped case (A. =O) recent investiga-
tions have established that the (1+1)-dimensional
version of the LL equation for the pure isotropic
case [A =0 and B=O in Eq. (3)] is completely
integrable and is equivalent to a nonlinear
Schrodinger equation, and that the elementary ex-
citations are envelope solitons and magnons. Also
for A & 05 6 and B= (O, O, BL) it is an integrable
solitonic system. We wish to consider now the ef-
fect of the damping terms proportional to P in Eq.
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(1) or (2) on the undamped spin motion. Tradi-
tional treatments of Eq. (1) in polar coordinates
tend to mix up the evolutions of the two angles in a
complicated way and so the damping is treated only

approximately. Even the other geometrical
parametrizations which proved to be successful in
the undamped case tend to complicate the treat-,

ment of damping. In the following, however, we
show that the parametrization of the spin field in
terms of a stereographic variable simplifies the
structure of Eq. (1) or Eq. (2) drastically.

We therefore project the unit sphere of spin
S ( r, t) =1 stereographically onto a complex vari-
able co( r, t) 9:

( )
S"+ iS»

(1+S') '

2 Redo( r, t)
(1+QJQj )

S»( )
21m&v( r, t) S,( )

(1—o)o) )
(1+QJQI ) (1+rdcu )

(4a)

(4b)

Then the derivatives are easily seen to be

S,"=BS"/Bt = I'[o), (1—co') + (o,"(I—o)') ],
S»= —ir [o),(1+(u') —cu,'(I + tu') ],

Sg = 2I (QJgQJ + Q)QJg ),
and

'7'S"= I' [(1—~') '7'~+ (1—m') '7'o)" ]

—2r't'[2(~+ ~') 7~ '7~'+ ~'(I —~') ( 7~)'+ ~(1—~') (7~')'],
v'S»= ir[(1+—N')v'N (1+ ')—v' ']

+ 2ir'/'[2(~ —~') 7~ '7~'+ ~'(I+ ~') (7~)'—~(1+~') ( 7~')'],
S = —2I i [cu (1+6)Q) )7 Qi+ QJ(l+ (Uco )7 QJ

+ 2(l —o)o)') V(u '7m —2~"'(7~)' —2m'('7m")'],

(Sa)

(5b)

(Sc)

(6a)

(6b)

(6c)

where I'= (1+co~') 2. We then reexpress the individual components of Eq. (1) for the specific form of
F,rr in Eq. (3). The x component of Eq. (1) with B=0 (for B A 0, see below) reads

riS"/rit = (SM'S' S"7'S») —2AS»S'+ X [—7'S"—(S 72S —2A (S n)']S"]. (7)

By use of the stereographic transformation in Eqs. (4)-(6) and the fact that

S ' 7 S = —4 7 ' ' 7CU / ( I + QÃd )

Eq. (7) can be rewritten as

(1 —(o'2) G ( tu, o)') —(1—(o2) G' (o), (u') = 0,

where

G (cu, o)') = i(l+ o)co')(u, + (1 —iA ) [(I+ o)o)') '72m) —2o)'(7co) 2+ 2A o) (I —o)o)') ].
Similarly the other two components of Eq. (1) become

—i(1+a)') G((u, co') —i(1+o)') G'(tu, (o') =0

and

2QJ G(QJ, QJ ) 20)G (QJ, Cd ) =0.

(9)

(10)

(12)

Consistency of Eqs. (9)-(12) then obviously implies G(co, co') =0 and G'(co, co') =0 so that the evolution
equation for the stereographic variable co( r, t) in the presence of damping becomes

i(1+o)co")co, + (1 —iA. ) [(1+coo)') 7 o) —2o)'(7o) ) + 2A cu(1 —o)co') ] = 0, (13)
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and its complex conjugate. On the other hand, redefining the time variable

we obtain

i(1+tutu')cu, + [(I+tutu')'vr cu —2''Vcu 'vrcu+2Atu(1 —tutu")] =0,

(14)

(15)

which is exactly the same as the undamped evolution equation for co endowed here with the scaled time ~.
Thus for every solution in the A. = 0 case, we have the corresponding solution in the damped (A. A 0) case
just with the rescaling in Eq. (14) of the time parameter. The corresponding damped spin field S( r, t) can
then be constructed simply from Eq. (4).

It can be easily observed that the effect of magnetic fields p, B on F,« in Eq. (3) does not alter the above
fact either. We verify that the effect of a longitudinal field B(t) =(0,0,B (t)) is to add a term
—p, BL(1+tutu')cu to the terms proportional to (1—iA. ) in Eq. (13) and the effect of a transverse field
B(t) = (B (t), 0, 0) is to add a factor —,

' pB (1—ik)(1+tucu')(1 —tu ) to the left hand side of Eq. (13).
More generally, we claim that for a given arbitrary F,ff, our above assertion is true. The reason for this can

be elucidated by manipulation of the Gilbert form in Eq. (2): The time derivative terms in Eq. (2) can be
summarized in stereographic coordinates as

"riS/r)t+ )t(S x tiS/t) t) = [(1+iX)/(I+ tutu")2] [(1—tu'z) et —i(1 + tu'2) e2 —2cu e3]cu, + c c., (16)

where the unit orthonormal vectors e;, i =1,2, 3,
define S = S"e

&
+ S~ e2+ S' e 3 and c.c. stands for

complex conjugate in Eq. (16). Since the remaining
term in Eq. (2), i.e., S x Feff includes no
dependent term, the spin evolution equation in Eq.
(2) rewritten in stereographic coordinates is ob-
tained from its undamped version by multiplying
the time variable by the factor (1+i'.) ' in the
latter. Combining this fact with the already existing
scale difference 1+)tz between Eqs. (1) and (2), we
once again but in a more general way arrive at the
earlier conclusion that the effect of Landau-
Lifshitz-Gilbert damping is just a rescaling of time
by the factor 1 —iX of the undamped spin motion.
This simplification makes feasible a systematic
study on pattern-forming transitions and kinetics of
topological singularities in nonequilibrium mag-
nets, ' where the Gilbert damping as well as driv-
ing magnetic fields play an essential role.
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