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Ordering Field, Order Parameter, and Self-Avoiding Walks
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We consider a grand canonical ensemble of self-avoiding walks and study its properties on
a Bethe lattice of coordination number q = 3 and in one dimension, without using the n 0
trick. The study enables us to identify the ordering field as the activity for the walk ends.
We also identify the order parameter of the problem for the first time: The order parameter
is the probability of obtaining an infinite self-avoiding walk (reaching the "boundary"), hav-
ing started at the origin in some direction.

PACS numbers: 02.50.+s, 05.50.+q

Our understanding of polymers has greatly ad-
vanced over the past ten years or so, mainly be-
cause of a remarkable observation by de Gennes, '

who argued that polymers can be described very
simply by a formal n 0 limit of an n-component
field theory. The analogy was further extended by
des Cloizeaux to describe polymers in a solution.
This analogy is found to be much more transparent
if we restrict ourselves to a lattice and consider a
self-avoiding walk (SAW) as an idealized represen-

tation of a polymer chain. It is found "that the ac-
tivity K for a bond and the activity q for an end
point of a SAW are related to the ferromagnetic
coupling K and the magnetic field H of an n-vector
model as n 0. However, the analogy is not com-
plete for the following two very important reasons:
(i) The physical significance of the spontaneous
magnetization m is completely lost when n 0.4
Even the nature of the ordered state is not very
clear in this limit. Ho~ever, since the correspond-
ing polymer problem is a physical one, we must be
able to describe the "ordered" state by a suitable
and physically significant "order" parameter. (ii)
The proof of the correspondence between polymers
and the n 0 limit of the magnetic system5 as-
sumes explicitly the full O(n) symmetry. There-
fore, the correspondence works only at high tern-
peratures, i.e., above and, at most, up to the critical
temperature T, . There is no reason to believe that
the analogy also works below T, where the sym-
metry of the theory is explicitly broken, as has been
recently argued. ~

Because of the above two gaps in our understand-
ing, it is imperative that we study the polymer, i.e.,
the SAW problem directly, without ever invoking
the formal n 0 limit. In the present work, we
make such an attempt and study the SAW problem
on a Bethe lattice of coordination number q =3 and
in one dimension, and successfully bridge the first
gap mentioned above. The "ordering" field is
identified as g. The critical behavior, which occurs

at K=K when q=0, is completely destroyed as
soon as q & 0, a result we would have certainly ex-
pected from the analogy with the n-vector model
when n 0. The four new and important results
reported in this Letter are the following: (a) We
identify the "order" parameter P(K) for the first
time: P(tc) is the probability that a SAW originat-
ing at the origin extends to the "boundary" of the
lattice in sotne direction. (b) The bond density Pt
is zero below and nonzero above K, . (c) The poly-
mer density $p is zero everywhere. (d) The ground
state is basically a SAW on the lattice, which below

K, never feels the presence of the boundary, but
above tc„covers a finite fraction of the lattice sites,
and describes the physics of the ordered state. All

these results are valid only when q = 0.
The natural object to study is the following grand

canonical ensemble:

z= X X v)'p tUK„, (1)

where Upr is the number of ways of putting p dif-
ferent SAW's of total length l on the lattice. For
the sake of clarity, we only consider Bethe lattices
of coordination number q*= 2 (one dimension) and

q = 3, although the method is easily generalizable to
any other q. Because of the peculiar topology of the
Bethe lattice (q ~ 3), the behavior in the "interi-
or" of the lattice is very different from that of the
whole lattice. ' Hence, in order to ignore the ef-
fects of this peculiar topology (in which a finite
fraction of sites belongs to the surface in the ther-
modynamic limit), attention is focused on the inte-
rior of the lattice. This will be achieved by the
demand that all (interior) sites be equivalent [see
comments following Eq. (4) below]. Thus, we ex-
pect the results to closely reflect the physics of the
polymer problem on regular lattices. The correct-
ness of the approach is then confirmed by a study
of the one-dimensional case, where the physics of
the problem is basically trivial.

To begin with, let us consider the case q = 3. We
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denote the Bethe lattice by LB and denote its dual
(triangular cactus) by Lp. Let N be the total
number of sites on LB. The number of sites ND on
LD is 3N/2 (q =3). The number of triangular fig-
ures on LD is, ho~ever, NT = N. We now put an Is-
ing spin S on each site of LD. If the spin is up,
denoted by 0 (down, denoted by 1), this corre-
sponds to an occupied (unoccupied) bond on La. If

I

fects of all the "outer" spins. ' We expect that

Z~(S) =A exp(H'S). (4)
The partition function Z is easily seen to be given
by Z = Zp2 (0) + Zp2 (1). The consistency condition
for all sites to be equivalent, so that we explore
only the interior of the lattice, requires that all H'
be identical. Let H' be this value. The recursion
relations between Z (S) and Z t(S) are easily
seen to be given by

i(0) =A~(2o)t+co2/x) =A~ tax,

Cdp= D, Cdt = E(K /'rl) l

rp =E(v)/K ) o) =~ /K
(3)

where D =exp(8/a+ kp+ 3k'+ k3+ 3h/2) and
E=exp(kp —k2). It is evident from Fig. 1(a) that

by taking a 0+, coo 0 and hence Nooo 0. In
this limit, coi, cu2, and co3 remain unchanged, as they
do not depend upon a. Thus, we can study Z by
studying Z, and this requires no formal limit of the
kind n 0.

The study of Z on the Bethe lattice is easily car-
ried out in a recursive manner ' by satisfaction of
certain consistency conditions. Let us consider the
mth level of the Bethe lattice and evaluate Z (S),
the partial partition function of a spin in state S at
the mth level, obtained by summation of the ef-

(s)
Z~ t(1) = A~ (~tx+ 2o)2+ o)3/x) = A~ t/Qx,

where x = exp(2H'). From (4), we find that
x must satisfy

x = (2~tx+ ~2)/(cu&x + 2~2x+ ~3), (6)

For co2) 0, there is only one solution of (6).
However, for co2=0, i.e., q =0, something interest-
ing happens. For cu3) 2~i, x=0 is the only solu-
tion. For co3(2m&, a new solution, along with
x =0, appears, which indicates a phase transition at
o)3 2o) &, i.e., at K = K = 2, when the ordering field

q vanishes. For 7i=0, the solution of (6) is given
by

b 0 (c)

the interaction energy is properly chosen (see
below), so that no triangular figure has all three
spins up, which corresponds to three bonds coming
out of a site on Lq, we find that we have only
SAW's on Lq. Let Nq, Nq, q, , and Nq, q,q, denote

the number of spins in state S, the number of
bonds with spins Si and S2, and the number of tri-
angles with spins Si, S2, and S3, respectively; then
it is easily seen that

Np= l, Nt=3N/2 —l, Npt=2(l+p), Npp= l —p, Ntt=3N 3l ——p,

Nppp = 0, Nppt = l p, Np&i = 2p, Nt it = N —( l + p)

Here p denotes the number of SAW's and t the total number of bonds in the configuration. The interaction
on LD is taken to be of the following form:

T
—Kp+ K2(StS2+ S2S3+ S3St) + K3SiS2S3+ —,

' H(St+ S2+ S3). (2)

Here, Tdenotes a triangular figure on LD and the sum is over all T.
For convenience, the parameters Kp, K2, K3, and H are chosen in the following manner: Kp= kp —1/a,

K2= k2 —1/a, K3= k3 —1/a, and H= h —2/a. With use of the values of the various N's given above, it is

easily seen that

P' = N(kp+ 3k2 —k3 —3h/2) + 21(h —2k2) + 4p (k3 —k2),

which is independent of a. If we define
= exp[4(k3 —k2) ] and x = exp[2(h —2k') ], we
find that the partition function Z corresponding to
(2) is related to (1) as follows: Z=e+cZ, where
C = kp + 3 k2 k3 3h/2. The four possible states
of a T are shown in Fig. 1. The corresponding
weights are

0 0 0 1 0

FIG. 1. Four possible states of Tand their correspond-
ing weights.
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x=0 for K (K„
(7)x= (1/K, —1/K)' for K )K, .

It appears from (7) that x can be taken as a suitable
order parameter for our polymer problem.

It will be seen below [see (9)] that the following
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(9)
The factor of 3 is due to the fact that q=3 and
there are three different directions for the SAW to
come in. Also, we must divide by q, the activity
for the end point to account for the fact that an end
point is already present there at the origin. Thus,
P(K) is the probability of having a SAW starting

quantity

P(K) =3X/21'(X'+ I) (8)
is a better choice for the order parameter and has
strong physical appeal. From (7), we observe that
P (K) vanishes as ~ ~,+ according to P (lr)

(K K~)~, P = —,
' . To understand the physical

significance of the order parameter P(K), let us go
back to (5) and make the following observation:
When q=0, i.e., when ~2=0, we find that only
Fig. 1(b) contributes in the recursion relation for
Z (0). This figure continues the SAW coming in
from the mth level to the (m —1)th level. Let us
now compute the probability that this SAW ter-
minates at the origin. For this, we need not only
Z~(0), but also Z~ (0), which has the same mean-
ing as Z (0) but with the condition that the SAW
from the (m+ 1)th level does not continue to the
mth level. Evidently, Z t(0) = c02A /x. Thus,
the required probability that there is an end point of
a SAW at the origin is given by the following ex-
pression:

P(lr) = [3Zp(0) Zp(0)/qZ] =p
= 3x/2K (x'+ 1).

P(K) ii

0
3 /Kc

= 1/K

(ending) at the origin and going out to (coming in
from) infinity in any one direction, and is shown in
Fig. 2.

It will be shown below that if f is the free energy
per site in the thermodynamic limit, then P(K)
=r)f/r)q at q=0. Thus, the order parameter we
have introduced has a very strong physical mean-
ing. " It should be remarked at this point that P = —,

'

also for the magnetic system when n=0. '2 Since
near K„P(a) behaves basically as x, one may just
evaluate Bx/Bg at q = 0 to determine the exponent

It is found that y = 1. At K„one observes that
x —q'/, giving 5 = 3. It is evident that all of these
exponents have their classical values as expected.

Let us now calculate the density $» of SAW's and
the density pl of SAW bonds. '3 To determine P»,
we observe that Q» =$,/2, where P, is the density
of end points of SAW's. It is evident that only Fig.
1(c) gives rise to an end point. Therefore, it is not
hard to see that

FIG. 2. The schematic form of the order parameter
P (K) as a function of 1/~ for q = 3.

@~= 2@»= [Zp(0) Zt (1)cp2+ 2Zp(1) Zt (0)cp2]/Z = 3cp2x /(x + 1)(2(utx+ cp2). (10)

P(= (2Z) '(2rpt [2Zp(0) Z)(0) Zt(l) + Zp(1) Zt (0)]+rp2[2Zp(1) Zt(0) Zt(1) + Zp(0) Zt (1)]].
The extra factor of —,

' in the front is to account for
double counting of bonds. We finally find that
$1=3x /2(x +1), and does not explicitly depend
upon 'g.

For q 0 and K ~, we find that $,=1: All
sites of the lattice are covered. As a matter of fact,
for all ~ & lr„gi & 0, which implies that a finite
fraction of the lattice sites are covered. As claimed
at the beginning, we expect the above result also to
be valid for regular lattices. Thus, we expect $1&0
above some K = K, for regular lattices, for example,
a square lattice. (Obviously, we do not expect the

exponents to be the same. ) Since 7i=0, we expect
basically a single SAW to cover a finite fraction of
the lattice. (In order to understand the physics, we
must first consider a finite lattice, and then consider
the thermodynamic limit. ) Therefore, the SAW
must feel the presence of the "boundary" of the
lattice. Below K„pl = 0 and, therefore, there is no
reason for the SAW to even know the presence of
the boundary of the lattice.

Now, we are in a better position to fully appreci-
ate the physical significance of P(K) As is evident.

As q 0, $» 0. However, when q ~, we expect the lattice to be covered by dimers. This is certainly
the case here: From (6), we find that x = —,

' in this limit, and therefore $» = —,', regardless of the value of K.

The whole lattice is covered by dimers. Moreover, comparing (9) and (10), we also observe that
P (K) = 8f/Bq, ri = 0, as was claimed above.

The calculation of $1 is also not very difficult. We merely observe that Fig. 1(b) yields two bonds while
Fig. 1(c), which yields an end point, contributes only one bond. It is not hard to see that
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from Fig .2, P(~) 0 as I~ ~. This is not hard
to understand. For simplicity, let us assume that
we have reflecting boundary conditions. As K starts
to increase above K„ the probability that the other
end of the SAW originating at the origin is infinite-

ly far away from the origin (i.e. , near the boundary)
increases for a while, but eventually decreases when
the other end is reflected back into the interior so
that it finds itself close to the origin.

To put things in an even better perspective, let us
briefly consider the one-dimensional problem
(q=2). The lattice is now self-dual. We follow
the same procedure as for q = 3, but with the fol-
lowing Hamiltonian on the dual lattice:
K g, S,S,+&+ H X; S,. It is easily found that
Z=exp(N(H —K))Z, where K=e ~ and
q2 = e 4~. Constructing the recursion relation
between Z~(S) and Z~ t(S) and requiring that
H' in (4) be the same for all m, we find that

Z I (I) =2 (r02/x+r0, /Qx) = A I/-Jx,

where at= (a'/q)' c0z=71' ", and co&= I/(arl)' '
and x is given by x= (r0tx+r0z)/(cozx+c0s). The
solutions are

x [K 1 + (K 1) + 4K'rl ]/2'rl JK.
For q 0, i.e., K ~, we find that K, =1 and
that x = 0 below ~, and x = ~ above K . At K„
x=1.

Following steps similar to those for q = 3, we can
evaluate the order parameter P(K) in one dimen-
sion. We find that Z~ I (0) = A~gri and that

P( ) = (2/71) [Z (0)Z (0)/Z] I, =o

=2x/K / (x + I).
Thus, we find that P(a) =0 everywhere except at
K = K = 1, where P (a ) = 1. Moreover, for rl = 0
one also finds that Ql is zero below ~, and unity
above K„while P~ = 0 everywhere.

It is not hard to understand the physics in one
dimension. Since pt= 1 above K„ the lattice is
completely filled up by a SAW. [For q=3, this
happened only in the limit K ~ (rl =0).] If we

use periodic boundary conditions, we find that the
two end points of the SAW are next to each other
for K )K„which explains why P(a) should be
zero. Since P(l~) is K independent, we must have
p=0. At K„P(v) is independent of rl, yielding
5=~. Moreover, y=1 and o. = l. All these ex-
ponents are consistent with the results of Balian and
Toulouse'" for d = 1 and n = 0.

To summarize, the SAW problem has been con-
sidered without the use of any formal n 0 limit.
The problem is shown to be identical to an Ising
model (with somewhat peculiar interactions or lim-

its). This analysis has enabled us to identify the or-
der parameter of the problem for the first time.
The analysis also clarifies, for the first time, the
physical nature of the ordered state: We have basi-
cally a single SAW extending in both directions to
infinity, in such a way that it reaches the boundary
of the lattice, since P, ) 0 in the ordered state. It
should be stressed that a lattice structure is very im-

portant in our understanding of the ground state
with Q& bounded between zero and one. In a con-
tinuum version, Pl can easily blow up, which makes
it useless above K, unless an ultraviolet cutoff is
used. 5 It appears at present that the ordered phase
discussed here is identical to the new phase that ap-
pears in Ref. 5.
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