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A condensed-matter analog of (2+1)-dimensional electrodynamics is constructed, and
the consequences of a recently discovered anomaly in such systems are discussed.
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Recently, new anomalous phenomena in (2
+1)-dimensional systems of fermions and gauge
fields have received much attention. ' The associ-
ated fermion zero modes, induced currents of ab-
norrnal parity, unusual quantum numbers, and frac-
tional statistics are interesting manifestations of the
role of topological structures in quantum physics.
Some of these, fractional charge and statistics in
particular, are relevant to the understanding of the
quantized Hall effect, which appears in planar sys-
tems of nonrelativistic electrons. However, rela-
tivistic (2+ 1)-dimensional gauge theories still lack
a realistic physical setting. The purpose of this
Letter is to point out one such realization and to
discuss the consequences of anomalies there.

In the lattice formulation of gauge theories on
even-dimensional space-times the axial anomaly
can be understood as an external field-induced level
shift. ' Recently, on this basis, the formal similari-

ty of fermions in lattice gauge theories and the
tight-binding description of electrons in crystals has
been used to propose a condensed-matter analog of
the (3+1)-dimensional axial anomaly. " In a hy-

pothetical, parity-noninvariant, gapless semicon-
ductor the electron energy bands exhibit degeneracy
points, i.e., points on the Fermi surface where the
conduction and valence bands intersect. The low-

energy electron dynamics are described by lineariz-

ing their spectrum about the degeneracy points and
are thus modeled by relativistic Weyl fermions. It

is a general theorem that these must occur in right-
and left-handed pairs. ' In the presence of parallel
external electric and magnetic fields the axial ano-
maly effects a transfer of electrons between the
right- and left-handed degeneracy points, observ-
able as a strong longitudinal magnetoconductance.

In the following we shall develop a similar
condensed-matter analog of (2+ 1)-dimensional
electrodynamics. We consider the tight-binding
description of electrons on a planar, honeycomb lat-
tice. The band structure exhibits two degeneracy
points per Brillouin zone and the low-energy
behavior is obtained in the continuum limit where
two species of relativistic (2+1)-dimensional fer-
mions emerge. Then, in accordance with general
considerations, external magnetic fields induce zero
modes in the electron energy spectrum, and the
resulting degenerate ground states are charged. We
shall suggest scenarios where these induced charges
may be observed.

The model considered here has been used exten-
sively to study the electromagnetic properties of
graphite. ' Graphite is a semimetal which to a first
approximation is composed of independent layers
of carbon atoms. Each layer forms a honeycomb
lattice with one valence electron per atomic site. In
the planar material, the existence of two degeneracy
points per Brillouin zone is a general consequence
of the lattice symmetries. ' Here, we shall present
a simple dynamical model where this degeneracy is
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explicit. In three-dimensional graphite, interplanar
interactions break the symmetry, '5 and this model
may not be strictly applicable there. However,
there may be various types of intercalated or exfoli-
ated graphite where the interplanar coupling is
negligible. Furthermore, it may be possible to fab-
ricate a graphite monolayer where the effects which
we describe would be observable.

Before we present the details of our model let us
review the salient features of three-dimensional
electrodynamics. On odd-dimensional space-times
chirality is absent (there is no analog of ys) and
conservation laws for fermionic currents are not
anomalous. However, a new phenomenon of this
type is known to arise. For each species of fer-
mions, external gauge fields induce a current of ab-
normal parity in the ground state. For example,
consider a fermion coupled to a U(1) gauge field in
(2+ 1)-dimensions with Lagrangian

L (x) = P(x) (iy~D„m)y (—x)

where y" = (a3,i a', i o.2) (o' a.re the Pauli matrices)
and D„=8„—ieA~ The. induced current is

j"(x) = (e/gm) e~""F„z(x)sgn(m) +. . . . (2)

Corrections to (2) are of higher orders in deriva-
tives of F„„=6„A„—B„A„and (2) gives the
induced electric charge 0=fd x j (x) =e4/
2sgn(m) exactly, 2 where 4=2rr 'Jd x B(x)
the magnetic flux. The mass term in (1) violates
parity which is defined as the reflection of one spa-
tial coordinate:

Ap 2(xl, x2, t) Ap 2( —Xl,X2, t);

A t (xt,xg, t) —3 i ( —x, ,x2, t);

y (xt,x2, t) —rr'y ( —x, ,x, , t)

When m 0, (1) is formally invariant under this

transformation. However, the current (2) retains
its parity-noninvariant contribution with an ambigu-
ous sign.

This sign anomaly of the massless limit has its
origin in the existence of zero-energy bound states
of the relevant Dirac Hamiltonian, 5 H= —iy y

D. In a static background magnetic field (Ap
= 0, A, = 0) with quantized flux, ~4 ~

= n, the spatial
manifold can be compactified to S (rather than
R2), '6'7 the spectrum of 0 is discrete, and index
theorems'6' (or an explicit construction5) indicate
n zero modes. The ground state of the quantum
systems is (n+I)-fold degenerate with induced
vacuum charges g= —(e/2) ~4~, —(e/2) ~C&~ + e,
..., (./2) I~I. "

Consider the planar honeycomb lattice depicted
in Fig. 1. The Bravais lattice is triangular and the
unit cell contains two sites, which we denote type A
and type B. The type A sites are generated by linear
combinations of the basis vectors at = ( —,

' J3,
——,')a; a2= (0, 1)a (where a is the lattice spac-
ing), with integer coefficients, A(ntn2) = ntat
+ n2a2. The sublattices are connected by the vec-
tors b, = (I/243, —,

' )a; b2 ——(I/243, ——', )a; b3
= ( —I/J3, 0) a, and the type B sites are generated
by B(mtmz) = mt at+ m2a2+ bt. The reciprocal-
lattice basis vectors are Rt = (4'/ j3a ) (1,0);
R2= (4'/%3a) ( —,', —,'W3) and the Brillouin zone,
Qz, is a hexagon in momentum space with opposite
sides identified (see Fig. 2).

The graphite lattice is monatomic with the sites
occupied by carbon atoms. We consider a slightly
more general diatomic system by assuming that
sites A and 8 are occupied by distinct types of
atoms. We parametrize the difference of energies
of electrons localized on A and B by P. An exam-
ple of a layered diatomic material described by this

Rp identified sides

B—A B—A B
/ X / X /

A B—A B—A
/

B—A B~A B
/ Xbz /

A oq B—A B—A
/ X /

B—A a~ B—A
/ X

' / X /
A B—A B—A

FIG. 1. The honeycomb lattice as a superposition of
two triangular sublattices. The basis vectors are
a

&
= (J3/2, —

2 )a; a 2
= (0, 1)a and the sublattices are

connected by b~ = (1/243, T)a; b2= (I/2E3, —T)a;
b3= ( —I/J3, 0) a.
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FIG. 2. The Brillouin zone. The reciprocal-lattice
basis vectors are R~= (4n./&3a)(1, 0); Rq= (4n/J3a)
&& (—,, —,J3). The degeneracy points occur at the corners,

1 1

ijklmn, of the Brillouin zone. Two of these are in-
equivalent; we have chosen q ~

= (4m/ J3a ) ( 2, I/2 J3 )
at pointi and q2= —

q~ at point 1.
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lattice is boron nitride. The graphite model is regained by setting p to zero.
In the tight-binding approximation and where only nearest-neighbor interactions are retained, the Hamil-

tonian is

H=nx[U (A) V(A+ b, )+ Vf(A+ b, ) U(A)]+PX[U (A) U(A) —V (A+ bt) V(A+ bt)].
A, i A

(3)

Here U and U ( V and V) are the creation and destruction operators for electrons localized on sites A (B),
respectively. The hopping parameter 0, is related to the probability amplitude for electron transfer between
neighboring sites. For the moment, we ignore the electron spin. Using the Fourier transform

U(A) =
JI

e'"'" U(k), V(B) =Jt
" .'& V(k)

Qii (2~)2 '
Qii (2~)2

in (3) results in

H= JI [U (k), V (k)]d2k

Qi3(2 )2 —ik ~ b& —ik b2 —ik b3) V(k)

ik b& ik'b2 ik'b3 2 ]/2The energy eigenvalues are E(k) = + (P2+n ie '+ e '+ e 3i )'i . With one electron per site
(one electron per unit cell per spin degree of freedom), the negative-energy states (valence band) are filled
and the positive-energy states (conduction band) are empty. The separation of the conduction and valence
bands is minimal at the zeros of exp(ik bt)+exp(ik b2)+exp(ik b3). These occur at qt=(4m/J3a)
x ( —, , I/243), q2= —q&, and all other equivalent points, which are the corners of the Brillouin zone (jiklmn
in Fig. 2). In the continuum (low energy) limit (a 0), only electron states near qt and q2 participate in
the dynamics. We obtain two species of fermions:

U(k —qt) U(k+ qt)
Qt(k) = 2na J3exp( —i ,'7ro)—(-. , , ifi2(k) = ,'na J—3exp(—i ', mo3)o-'—

Vk —q&j' V&k+q&j ' (4)

with Hamiltonian

H= dk 2m' i k y k+m i k + 2 k y k —m 2 k

where m =2P/J3na In coord. inate space,

H= dx 2m ix iy D+m ix+ 2x iy D —m 2x (5)

and

= (e/4n )ei'""F„„(x)sgn(m) +

jf" (x) =
& & [02 Y P2])

= —(e/4m) e&""F„„(x)sgn(m) +

where we have assumed that the interaction with
the electromagnetic field proceeds through minimal
coupling.

The Hamiltonian in (5) is invariant under parity
when the fermions pt and $2 transform into each
other: Q t (xt,x2, t) a'ici2( —xt, x2, t); ifi2(xt, x2, t)

o'Qt( —xt, x2, t). Furthermore, it has the
conjugation symmetry pi (7 lf/2 I(2 0 3IP 3,
H —H. The separately conserved induced
currents are

where we have included a factor of 2 for the spin
degeneracy. Therefore, because of the fermion
doubling, the electric current j~+ = jf" + jf" van-
ishes. The odd combination is nonzero:

= (e/2m) ei'""F„k(x)sgn(m) +
However, it would couple to an unphysical external
field of abnormal parity and is therefore not directly
observable.

In the massless limit i8 0 or m ~ 0 we recover
the graphite model. There the general considera-
tions imply that in an external magnetic field with
flux i'Ii'i = n, there are 2n zero-energy modes. If we
take the electron spin into account, each of these
bound states is a spin doublet. The ground state is
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then (4n+1)-fold degenerate, the charges of
these states being Q= —2el@l, —2el@l+e, . . . ,
2e lel.

The spinless state (all spina paired) with charge
Q = + ( —)2e ICl is easily obtained by the intro-
duction of a small positive (negative) chemical po-
tential which guarantees that all zero-energy levels
are occupied (unoccupied). Alternatively, if the
electrons are subject to the Zeeman interaction
which has the effect of raising the energy of those
whose spins are aligned parallel with a uniform
external magnetic field and of lowering the energy
of those antialigned, the system would be un-
charged but would have 2n unpaired spins.

The latter scenario would be observable as an an-
isotropic electron spin-resonance amplitude. The
Zeeman splitting of the energy levels is approxi-
mately independent of the direction of the external
field. However, the flux through the plane of the
system (and therefore the number of zero modes)
is proportional to the sine of the angle 8 between
the plane and the external field. The number of
unpaired spins per unit area is therefore equal to
4mB sin0. The angle dependence of the electron
spin-resonance amplitude would be direct evidence
for the vacuum degeneracy. Observation of this ef-
fect in a real material such as planar graphite would
be an interesting confirmation of the phenomena
which we have described.
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