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We discuss a smoothing-out procedure that deforms a family of locally inhomogeneous
and anisotropic spatially closed cosmological models into closed Friedmann-Robertson-
Walker universes. This gives a precise content to the averaging hypothesis tacitly assumed in
cosmology by providing explicitly the correction terms to the physical sources induced on
smoothing out the space-time geometry. The consequences of such terms on the dynamics
of the Universe are discussed.
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universe, for instance by altering the energy condi-
tions satisfied by the physical sources, and should
be properly taken into account.

In order to provide an answer to the questions
raised by the above remarks, we discuss here, in the
full theory, a smoothing-out procedure for a physi-
cally significant class of space-times. These space-
times are associated with gravitational configura-
tions that may be considered near to the standard
gravitational configurations generating closed Fried-
mann-Robertson-Walker (FRW) universes. In or-
der to define explicitly the smoothing out mapping
we use techniques from the Arnowitt-Deser-Misner
formulation of the initial-value problem in general
relativity. 2 The basic idea is to pick up a suitable in-
itial data set, the Cauchy development of which is
the space-time to be averaged out. Such data set is
then smoothly deformed, by means of parabolic-
type operators, into a FRW initial-data set. This de-
formation is constructed in such a way as to make
the deformed data satisfy the four constraints asso-
ciated with Einstein's equations. It then follows, by
standard theorems on the Cauchy development of
regular initial-data sets, that the flow of deformed
data generates a one-parameter family of solutions
of the field equations. Such a family of solutions
interpolates between the original space-time and a
closed FRW space-time that can be considered the
smoothed out counterpart of the given model
universe. In this Letter, we describe the above pro-
cedure, providing explicitly the geometric correc-
tion terms to the physical sources induced on
averaging. We also prove that such correction
terms do not give rise to a violation of the dom-
inant energy condition. This result supports the
naturality of this smoothing out technique and it
implies that the FRWs obtained on averaging are
indeed physically admissible solutions of the field
equations. Applications to particular examples such
as anisotropic cosmological models and further de-
tails will be presented elsewhere.
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Our universe is manifestly spatially isotropic
when observed over large scales (L ) 10 Mpc).
However, locally (L up to 10 Mpc and most likely

up to 100 Mpc, as recent analyses of supercluster
data have shown) it appears quite inhomogeneous
with vast empty regions punctuated with richly
structured concentrations of matter and radiation.

On such local scales, the space-time geometry, as
determined by Einstein's equations, is extremely
complex, and its structure is not, to a large extent,
particularly illuminating for the purposes of cosmol-
ogists. Thus, it is customary to ignore this fine
graining when dealing with the kinematics and the
dynamics of the universe as a whole. In practice,
we imagine averaging out all the inhomogeneities
associated with the local material content of the ac-
tual universe, and redistributing them homogene-
ously (e.g. , in the form of a uniform incoherent
dust or perfect fluid). The basic and tacit assump-
tion underlying this process is that such a smoothed
out universe and the actual, locally inhomogeneous
universe behave identically under their own gravita-
tion. Existing astronomical data do not contradict
such an assumption, so that it is usually taken for
granted.

In this connection, it has been remarked (most
recently by Ellis') that nobody has ever provided an
explicit constructive procedure for carrying out
such a smoothing process in the full theory (there
have been attempts in the linearized theory; see
Ref. 1 for references), and that consequently, some
care must be taken in reaching the above con-
clusions. The basic argument advocated in such
criticisms is that Einstein's equations are highly
nonlinear, and it is not clear what is the effect on
them of averaging out either the external sources or
the space-time geometry. For instance, Ellis' con-
jectured that on smoothing out the space-time
geometry there would appear geometric correction
terms in the sources to Einstein's equations. Such
correction terms may influence the dynamics of the
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Let (1 =M XI, g) be a space-time manifold
considered as the Cauchy development of a regular
initial-data set (M, h, E) M.is the three-manifold
carrier of the initial data, $ is a diffeomorphism
mapping V onto the product M x I (I being a suit-
able subset of R), and h and K are symmetric bilin-
ear forms on M representing in the final space-time
the induced Riemannian three-metric on M, and
the second fundamental form of the embedding of
M in ( V4,g), respectively. Following the remarks
in the introduction, we assume that M is topologi-
cally a three-sphere S3 (possibly quotiented by a

finite group of isometrics, I, acting without fixed
points), and that such manifold supports a particu-
lar class of initial data. Namely, we consider those
data on M for which Ric(h) is a positive-definite bi-

linear form [Ric(h) is the Ricci tensor associated
with h]. As a consequence of a result of Hamilton, ~

such data belong to the same connected com-
ponent, in the space of all possible initial-data sets
on M, as the standard FRW data on S . As such, a

(V,g) resulting from the time evolution of any
data set in that class may be considered as modeling
a locally anisotropic and inhomogeneous universe
not too far from a standard closed FRW space-time.
Notice that such class is quite large, since it con-
tains solutions of the field equations which are not
simply perturbations of closed FRW space-times.
For instance, the Taub universe belongs to it as well

as other empty Bianchi IX models.
Under the above assumptions, it is possible to

provide explicitly a smoothing out mapping that as-
sociates with the given initial-data set a one-
parameter family of initial data (M, h(p), K(p)),
with 0 ~ p & ~, h (0) = h, K (0) = E, approximat-
ing more and more closely, in the uniform topolo-
gy, the standard initial-data set for a closed FRW
model and reaching it uniformly as p

The main technical tool we need is the result by
Hamilton, already recalled (see also DeTurck ),
showing that if Ric(h) ) 0 on a closed three-
manifold M, then the metric in question can be
continuously deformed into the standard constant-

curvature metric h on S . This deformation is at-
tained by the flow of metrics h (p), 0~ p & ~,
solution of the nonlinear, weakly parabolic, initial-
value problem

h, b (p) = —(R (p) )ph, b (p) —2R,b (p),
2

(1)
h., (0) =h., (a, h =1, 2, 3),

where (8 (p) ) p is the average scalar curvature over
(Mh (P)), i.e., (8 (P))p= Vol '(Mh (P))
x f 8 (p) d up, [henceforth, the angular brackets

( ) p will always denote the average of the enclosed
quantity over (M, h (p) ) ], and where R,b (p) and
R (p) denote the components of the Ricci tensor
and the scale curvature associated with h (p),
respectively. The smooth flow of metrics h (p) de-
fined on M by (1) (the Hamilton flow) has a
number of remarkable properties. It can be shown
that as P ~, h (P) approaches h uniformly.
Moreover, h(p) preserves the total volume of
(M, h), namely Vol(M, h(P)) =Vol(M, h), O~P

Also, all the symmetries which the original
metric h may be endowed with are preserved by
h (p). Thus, the Hamilton flow appears as a natural
candidate for a smoothing out mapping that associ-
ates with the given h a constant-curvature metric on
S . Such metric is fixed by the natural normaliza-
tion condition Vol(S3, h ) = Vol(M, h), and obtained
from the original metric h by isotropizing its asym-
metries while preserving all its preexisting
isometrics, if any.

In order to smooth out the complete set of initial
data (M, h, K), we need also a way of averaging out
the second fundamental form E. To this end, to-
gether with the flow h (p) solution of (1), consider
a nearby flow h'(p) with initial condition h'(0)
= h + eE, where E is the given value of the second
fundamental form. These flows evolve with p
yielding as "connecting vector" the bilinear form
E(p) =lim, 0[h'(p) —h(p)]e '. The p evolu-
tion of K(p) is.found by linearizing (1) to obtain
the initial-value problem

K b(P) = —', h, q(P)( —,
' (R (P)k (P)) p

——,
' (R (P))p(k(P)) p

—(R,~(P)K'b(P)) p

+ —, (R (p) ) pK, b (p) —ApK, b (p) —Lrh, b (p), K,g (0) = K,g, (2)

where k(p) —=E', (p), Y, —= '7,K', (p) ——,
' '7, k(p) [V is the Riemannian connection associated with

h(p)], 5p denotes the De Rham-Lichnerowicz Laplacian associated with h(p), and Lr is the Lie deriva-
tive along the vector field Y.

A straightforward calculation shows that the flow K (p), solution of (2), is such that
(8/Bp) [(k(p))p]=0, namely the space average of its trace remains constant during the deformation.
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Furthermore, since (2) is nothing but the formal
linearization of Eq. (1) defining the Hamilton flow,
it immediately follows from the isotropizing proper-
ties of this latter that lim& K,b (p) = —,

' ((k) 0
x h,b). Thus, the flow K (p), formally defined by

(2), is such as to deform the given K by gradually
eliminating its shear K,b =K,b

——,kh, &, and by re-

placing the original (position-dependent) rate of
volume expansion k with its average value.

In order that the smoothing-out flow of data
(h (P), K (P) ) is such as to give rise to a curve

P (h (P), E(P)) of regular initial-data sets, they
must satisfy, for each value of P, the four con-
straints associated with Einstein's equations, name-
ly

R (P) —K,b (P)K' (P) + k (P) = 2P (P), (3)
V K'b(/3) Vbk—(P) = Jb(P), (4)

where p(P) and J(P), respectively, are the mass
density and the momentum density [as referred to
the P-dependent measure associated with h (P) ] of
the sources as experienced by a system of ~ ob-
servers instantaneously at rest on M. Notice that
p(0) = p and J (0) = J are the actual densities corre-
sponding to the physical sources describing the
given gravitational configuration (M, A, K). Hence,

for p=0, (3) and (4) are assumed to hold true.
Notice also that once h and K are given, the left-
hand members of (3) and (4) are, via the Hamilton
flows (1) and (2), known functions of P. As a
consequence we cannot define independently the
averaging flows p(P) and J(P), since in that case
(3) and (4) could not hold true, in general. This
circumstance is linked with the fact that there is no
simple way of providing ad hoc averaging pro-
cedures for the sources without explicitly taking
into account the back reaction of the geometry.
Since this back reaction is expressed by the con-
straints, the above remarks suggest that we inter-
pret (3) and (4) as actually defining p(P) and
J(p). The convenience of such interpretation fol-
lows immediately by verification that the flows
p(P) and J(P) so defined give rise to homogeniza-
tion and isotropization of the original p and J. For,
from (3) and (4), and the properties of the Hamil-
ton flows, it follows that as P ~, p(P) p
=lim& (p(P))&, and J(P) 0, uniformly.

The main question with such a smoothing-out
procedure for p concerns the relation between
p(P), as P ~, and (p)0, the average value of the
original physical p. It can be easily shown, by
directly taking into account the properties of the
flows (1), (2), that such a relation is provided by

p= lim (p(P)) p= [(p) + ,' (E, E') + ——,'R(7i+o')](I+o')
p~ oo

where cr = ((k ) a
—(k) a)' /(k) 0 is the standard deviation describing the fluctuations of the original value

of the rate of volume expansion with respect to its (conserved) average value (k)a, and where q=(R—(R)0)/R (0~ q ( 1) denotes the relative function of the physical scalar curvature with respect to the fi-
nal averaged curvature R.

Before turning to a critical discussion of the physical meaning of such a result, we must complete the
averaging procedure for the external sources by providing a way of smoothing out the spatial stress tensor S
corresponding to such sources. As is known, the stress tensor enters Einstein s equations only in their evo-
lutive part, namely [if (M, h, ) defines a normal geodesic slicing of ( V,g) for t sufficiently small],

(8/Bt )K~b = R~b +kgb —2K~~Kb —(S~b —
2 shab ) —

2 Ph~b,

where s =S, . We can define an isotropizing flow
S (p) for the stress tensor S,b by requiring that, for
each t for which the evolution of the curve of data
P~ (h(P), K(P)) is defined, the flows (h, (P),
E, (P) [resulting from evolution equations similar
to (6)] are Hamilton flows characterized by the
initial-value problems (1), (2) with initial condi-
tions h, (0) = h„K, (0) =E„respectively.

It is not difficult to understand how this pro-
cedure works. Let Vol(M, h, ) denote the volume of
(M, h, ) as t varies If, as re. quired, (h, (P),K, (P))
remain Hamilton flows under the time evolution of
the data (h (P), K (P) ), then, by the properties of
such flows, Vlo( Mh, (P)) =V l(oMh, ), for each t

for which the evolution is defined, and 0 ~ P ( ~.
Letting P ~, we can determine in this way the
time dependence of the volume of the surfaces of
homogeneity of the closed FRW model generated
by smoothing out the data (M, h, K). In this way,
the dynamics of the closed FRW associated, via
averaging, to (M, h, E) is tied to the dynamics of the
original space-time by the natural condition
Vol(S, h, ) = Vol(M, h, ). Notice that this last rela-
tion provides a precise mathematical content to the
requirement that the original physical model
universe and its FRW smoothed-out counterpart
should behave as similarly as possible under their
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'(k) o+ —'((p) o
—p) (7)

where p is given by (5).
It follows from (5) and (7) that P & 0 and that

the dominant energy condition ~p ~

~ p is satisfied,
so that the smoothed out sources are, in this sense,
physically admissible. More particularly, if, with

our real universe in mind, we assume that cr =0
(i.e., homogeneity of the expansion factor) and that

q « I (i.e., small fluctuations, on the average, of
the physical curvature with respect to the Fried-
mannian background curvature), then (5) and (7)
yield p = —, (s)p+ —, (EbK')p, and p= (p)p
+ 2 (K bE ) p. Thus if our universe were closed,
it could be modeled correctly by a closed FRW only
if we add to the physical sources ((p) p, (s) p) 'the

term (E,bE ' ) p that takes into account the contri-
bution of cosmological graviational radiation. No-
tice that there is no experimental evidence, ' up to
now, showing that ((K,bK' )p/(p)p) « I, and
hence such a term can influence quite seriously the
dynamics of the Universe.

We are grateful to Bruno Bertotti and Dennis De-
Turck for useful discussions. This work was

own gravitation. From Vol(M, ht ) = Vol(M,
h, (P)), we also get that (t)/t)t)((k)p) =(t)/t)t)
x ((k(p))tt) along the flow (ht(p), Kt(p)). This
last relation easily provides the smoothed-out pres-
sure p associated with the sources corresponding to
the particular FRW obtained. For, from it, by tak-

ing into account (6) and letting P ~, we get

p = ,
'

(s—)o+ '
, (K—.bK ")o
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