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Nonchaotic Rayleigh-Benard Convection with Four and Five
Incommensurate Frequencies
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The onset of time dependence of Rayleigh-Benard convection in water is studied in a rec-
tangular container with aspect ratio 9.5X4.6, Quasiperiodic states are observed exhibiting
four and five incommensurate frequencies. All but one of the modes are predominantly lo-
calized in different parts of the cell; this localization may explain the coexistence of more
than three incommensurate frequencies without chaos.

PACS numbers: 47.25.Qv, 02.50.+s

Much progress has been made in understanding
the nonlinear dynamics and the onset of chaos in
dissipative systems. ' Consider, for example,
Rayleigh-Benard convection in a horizontal fluid
layer heated from below. As the temperature
difference across the layer (or the Rayleigh number
R) is slowly increased, the steady convective flow
first becomes time dependent and then chaotic. In
one route to chaos observed in small systems, only
two or three modes with incommensurate frequen-
cies are observed before the onset of chaos.
However, the transition to chaos depends on the
nature and strength of the interactions between the
modes, 5 and in small systems the interaction
between modes is strong. Thus it is unclear what
relationship experiments in small systems might
have to the onset of chaos in a larger system, where
the modes can be more weakly coupled.

In this Letter we report a study of the onset of
time dependence in Rayleigh-Benard convection in
a rectangular container of aspect ratio 9.5&&4.6.
Quasiperiodic states are observed with four and five
incommensurate frequencies. Although nonlinear
interactions between these modes are observed,
most of the modes are found to be predominantly
localized in different parts of the cell. These results
suggest that spatial localization of the modes can
play an important role in determining the route to
chaos in an extended system.

The experiments were conducted with water at
50'C (Prandtl number 3.5) contained in a cell 0.51
cm high with horizontal dimensions 2.32&4.86 cm.
The top plate of the cell was sapphire. The cell
walls were made of glass, and the bottom plate was
copper. Optical access was achieved through an in-
termediate radiation shield maintained at 50'C, and
the apparatus was enclosed in a vacuum chamber
for thermal insulation. A broad, collimated laser
beam was directed vertically onto the cell; reflected
light from the bottom plate was directed onto a
screen, and the image was recorded on video tape.
The light intensity was also recorded by a pair of

photodiodes (about 1 mm in diameter) which could
be positioned anywhere in the image. At each Ray-
leigh number, data sets of at least 8000 samples
were recorded.

As R is increased slowly above the onset, R„ for
steady convective flow, an initial flow pattern is
formed with eight horizontal rolls parallel to the
short sides of the cell. At R =10R„ the eight
parallel rolls have become distorted, and a transi-
tion to six rolls is observed via the annihilation of a
roll pair in the cell interior. Neither the initial nor
the final state is time dependent. The transition oc-
curs at about 60'/0 larger R than predictions of the
onset of the skewed-varicose instability assuming
infinite aspect ratio. In accord with our observa-
tions, a finite aspect ratio would be expected to in-
crease the Rayleigh number of the onset of this in-
stability.

As R is increased further, the six-roll pattern be-
comes time dependent near 16.2R, . These results
contrast with observations in much larger cells
(e.g. , aspect ratio —30), where time dependence
occurs very near the onset of the skewed-varicose
instability. These results also contrast with data in
much smaller cells, where chaotic behavior occurs
without a change in the roll pattern. 2 4

Above 15R„ the state of parallel rolls [shown in
Fig. 1(a)] becomes appreciably distorted [Fig.
1(b)]. Then, as R is increased above 16.2R„we
observe the successive appearance of four time-
dependent modes with incommensurate frequen-
cies—in order of first appearance, ft —137 mHz, —
f2 ——3 mHz, f3 ——55 mHz, and f4 = 124 mHz.
Shown in Figs. 2(a) and 2(b) are frequency spectra
measured at different points in the cell. When the
intensity is recorded at a location where f&, f3, or f4
is strongest, the power spectrum is completely dom-
inated (by a factor ) 10 ) by that frequency and its
harmonics.

Modes f,, f3, and f4 are predominantly localized
in different parts of the cell, and the specific loca-
tion of the modes is different for different distor-
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FIG. 1. Schematic representation of the convective
flow patterns: (a) Time-independent six-roll pattern ob-
served at R & 15R,; upflow boundary shown by thin
lines and downflow boundary by heavy lines. (b) Dis-
torted and time-dependent pattern at 18.0R,; the solid
and dashed lines show the positions of the roll boun-
daries at different phases of the 3-mHz mode, f2 The.
dots marked 2(a) and 2(b) refer to Fig. 2. (c) The
unshaded areas indicate the regions where modes f~, f3,
and f4 are dominant. In these areas, the solid and
dashed lines indicate the phase fronts at different parts of
a cycle, and the arrows indicate the direction of motion of
these phase fronts.

tions of the underlying flow pattern. This tends to
rule out the possibility that the location of the
modes is determined by inhomogeneities in the ex-
perimental cell. The shadowgraph images indicate
that the modes ft and f4 (near frequencies of 137
and 124 mHz) are similar in nature with phase
fronts parallel to the long side of the cell and
motion of the fronts parallel to the roll axes [see
Fig. 1(c)]. Motion away from the upflow boundary
is also observed for f, , but not for f4. As shown in

Fig. 1(c), mode f3 near 55 mHz has phase fronts
similar to f& and f4, but it is a traveling disturbance
(as opposed to a standing wave in the case of f&

and

f4) which propagates away from the long side of the
cell. The mode f2 is qualitatively different from f,,

FIG. 2. Power spectra (sampling interval 0.2 s) mea-
sured at 18.7R, : (a) Data taken at the point marked 2(a)
in Fig. 1(b); and (b) data taken at point 2(b) in Fig. 1(b).

f3, and f4 having a much lower frequency of 3
mHz. As shown in Fig. 1(b), it corresponds to a
"breathing" motion of the rolls. It is the only mode
which has a large amplitude throughout the entire
cell.

Recent calculations by Bolton, Busse, and Clever
provide insight into the nature of the higher-
frequency modes such as ft, f3, and f4. They find
(for infinite aspect ratio) that several time-
dependent instabilities occur in the range
8 /8, —10—15. Physically, each unstable mode
corresponds to the advection of an equal number n

of hot and cold "beads" or "rods" around in a roll.
These modes have frequencies equal to nf„where
f, ' is the time for the beads or rods to circulate
around in a roll. For six parallel rolls in our cell, we
estimate f, —50 mHz. ' Since the observed
time-dependent roll pattern is distorted from a state
of parallel rolls, one might expect that modes with
slightly different frequencies (e.g. , f~ and f4) and
in different parts of the cell correspond to the same
value of n.

Shown in Fig. 3 are the observed frequencies as
functions of R. Strong nonlinear interaction of the
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FIG. 3. The Rayleigh number dependence of (a) fI,
(b) f2/fI, (c) f3/fI, and (d) f4/fI. Solid symbols desig-
nate a frequency-locked state where f ~

—f4= 4f2.

modes is observed near 18.1R, ; f2 grows large in

amplitude, and "locking" occurs such that

f~ f4 4f2=0. Th—is re—sults in only three incom-
mensurate frequencies for 18.1 & R/R, & 18.3.
Similar "locking regions" occur near 18.6R, and
18.9R, . Above 19R„ the underlying six-roll flow
pattern undergoes an irreversible transition to a
more complex flow with a chaotic time dependence.

We have conducted several tests to show that the
four modes have incommensurate frequencies and
are therefore independent. Shown in Fig. 3 are fl
and the frequency ratios f2/fl, f3/fl, and f4/fl, as
a function of R. Each frequency is observed to
have a different dependence on R. The differences
between the normalized frequencies are typically
much larger than the measurement errors ( & 10
for fl, f3, and f4, and &10 for f2). Thus,
while one can find sets of integers {m,) such that

g, m, f, = 0 at a particular R, no such relation holds
to within our experimental error over an extended
range in R.

A quantitative test for the incommensurate na-
ture of the oscillators was obtained by a X2 analysis
of the power spectra The cen. ter of each line fk
was determined by linear interpolation. The error

was estimated as a function peak height by use of
artifical data with a noise spectrum chosen to match
the experimental noise spectrum; typical errors
were about 2X10 ' Hz. Two sets of integers {n, {
were generated such that X~ In; f; =f„ for N = 3

and 4 incommensurate frequencies. The integers
{n; I were restricted to ~n; ~

~ 2+m;, where m, is

the highest observed harmonic of the i th frequency
in the spectrum. These coefficients, In; ), along
with the standard deviations estimated from the
peak heights, allowed calculation of X for both
values of N. For two spectra at R/R, =18.1(18.4),
examination of M = 23 (21) peaks yielded
X =35.6(8.64) for N =4, and X =2128(116) for
X = 3. The X values for the W =4 fits generally
deviated from the most probable value (i.e., the
number of degrees of freedom, M —N —1) by as
much as a factor of 2, reflecting difficulty encoun-
tered in estimating the error in frequency measure-
ments by use of artificial data. However, since the
addition of a redundant degree of freedom should
only reduce X by about 1, these results demon-
strate that the fourth frequency is necessary to ex-
plain the data satisfactorily. Varying the f; to
minimize X does not change this conclusion.

We have also studied a similar nonchaotic con-
vecting state which exhibits five incommensurate
frequencies. The basic flow pattern had six rolls
which were distorted slightly differently than the
pattern in Fig. 1(b). Four of these modes are spa-
tially localized oscillations: Three of these four os-
cillators (observed at 123, 135, and 159 mHz) are
similar in nature to the modes fl and f4 described
above; and the fourth, at 55 mHz, is similar to the

f3 mode of the four-frequency state. In this five-
frequency state, the modes occur at different loca-
tions in the cell from those shown in Fig. 1(c). The
location and nature of the fifth mode, which is ob-
served near 6 mHz, is not known. A X analysis of
the power spectra confirms that the five frequencies
are incommensurate. In addition, the fractal
dimension and metric entropy were calculated for
this five-frequency data set. The Grassberger-
Procaccia algorithm" gave a dimension of 5+0.2;
while the entropy' was zero within experimental
error. These two numbers taken together also con-
firm the presence of five incommensurate frequen-
cies without chaos.

We have presented a study of the onset of time-
dependent convection in a rectangular cell of inter-
mediate aspect ratio. The results indicate that, in
contrast to observations in smaller systems, more
than three modes with incommensurate frequencies
can reach a finite amplitude before chaos occurs.
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This study also demonstrates the importance of the
spatial dependence of the mode amplitudes in
determining the route to chaos in larger systems.
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H. Greenside on the dimension and entropy tests,
conversations with E. Bolton, F. Busse, M. Cross,
H. Greenside, and P. Hohenberg, and the extensive
technical assistance of G. Dimino and N. Hart-
sough.
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