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Liquid-State Theory for Critical Phenomena
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We have developed a unified theory of classical fluids in the form of a hierarchy of in-
tegrodifferential equations for the free energy and direct correlation functions. This theory
gives the correct a=4 —d expansion for critical phenomena. The presence of a hard core
does not modify the Ising universality class to lowest order in e. The simplest approximation
gives y=2v=1.38 in d =3. Suitable truncation of the hierarchy gives the correct low-
density (virial coefficients) and high-density (optimized random phase) limit.
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A realistic microscopic theory of the critical re-
gion of the liquid-vapor phase transition from the
standpoint of liquid-state theory is still not known.
A density-functional approach has been developed'
but of this only a formal analysis has been per-
formed. The present renormalization-group (RG)
techniques can be applied to a fluid only after an in-
itial operation of coarse graining has been per-
formed or the space has been discretized, thus ob-
taining lattice-gas models. In both cases we lose the
possibility of describing the correct short-range
behavior of the system. Moreover we do not know
if the short-range constraint, the so-called core con-
dition, due to the presence of the strong short-
range repulsive forces modifies the Ising universali-
ty class. It is also clear that there is no possibility of
describing the crossover, which is not universal,
from the critical to the noncritical region.

In this Letter we present a novel liquid-state
theory able to cope also with the critical region.
Our theory is a genuine theory of a fluid since at
low density our equations give the correct virial
expansion and at high density the theory can be re-
lated to an accurate approximation for dense
fluids, the optimized random-phase approximation
(ORPA).

We consider a system of classical particles in-
teracting with a two-body short-range potential
u(r). As usual in the theory of liquids we divide
u(r) into two parts:

u(r) =uR(r)+w(r),

where uR (r) contains the strong repulsive part of
the interaction, whereas w (r) corresponds to the
attractive forces so that w (r) is a regular function
of r and has a well-defined Fourier transform w(k).
Moreover, we assume that the properties of the sys-

tern interacting just with uR (r), the reference sys-

tem, are known. Following the lesson of the RG
approach we do not try to relate the properties of
the fully interacting system directly to those of the
reference system but we build up, step by step, the
effects of fluctuations on different length scales.
However, unlike the RG approach, we do not ob-
tain this by eliminating degrees of freedom but, at
any step, we maintain a full description of a suitable
system over all its length scales. We accomplish
this by considering a sequence of reference systems
intermediate between vR(r) and u(r). This ap-
proach was suggested some time ago by one of us
but now we construct this sequence in a different
way. A member of the sequence is characterized by
a wave vector Q (0 ~Q ~ee) such that u~(r)
= vR (r) + wO(r) where wO(r) has the Fourier
transform w o(k) = w (k) for k ~ Q whereas
w o(k) = 0 for k & Q. Using, for a generic value of
Q, this Q system as a reference system we obtain,
by standard expansion techniques, the properties
of the system with u~ ~(r) in powers of the per-
turbing interaction 5$~= —P(ug d~ —u0). Spe-
cifically, we construct our equations in the follow-
ing way. Using the grand canonical ensemble we
expand the free energy A ~ 0 in a power series in
8$~ and chains of the interaction 5$~ are summed
over, thus introducing a renormalized interaction.
As a result of the sharp cutoff of w 0(k) at k = Q
the pair correlation functions have a discontinuity at
k = Q. We can avoid this by introducing a "modi-
fied" Q system for which the effect of w(k) for
0 & k & Q on the free energy and on the pair corre-
lation functions is also included but only in
random-phase approximation (RPA). The higher-
order correlation functions are left unmodified.
This procedure gives a hierarchy of coupled equa-
tions for the correlation functions and the first two
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read

—da ~/dQ = —,
'

(27r ) dfd Op ln ( [1+F ~(p) y(p) ] [I —F~ (p)j (p) ] j

d c ~(k)/dQ =M~(k),

M~(k) = —, (2 ) Jd)) (cr(k, —k, p, —p)+)F ~(k+p)[c r(kp, —/c —p)]~)

~ [F '(p) ]'b(p)/[I+ F '(p) @(p)].

(2)

(3)

Here we consider the case of a d-dimensional system and the integration is over the surface (p(=Q.
(t)(k) = —Pw(k) and c „represents the n-body direct correlation function for the Q system. This differs
from the commonly defined one co by the ideal-gas contribution:

c „~(ktt. . . , k„)=cg(k), . . . , k„) + ( —1)" '(n —2)!/p" (5)

We have defined a q = —PA 0/ V, and 3 0 and
c ~(k) [c ~ = c 2~ —P(w —w ~) ] are respectively the
Helmholtz free energy and the two-point direct
correlation function of the "modified" Q system.
In addition we have F ~ = —(c ~) ' and F ~
= —(c 2~) '. Symbols with label R denote quanti-
ties for the vz system. Each higher-order function
c ~ satisfies an equation similar to (3) being cou-
pled to cg+t and to c„+2. When Q=O all those
functions represent the ones of the fully interacting
system. The usual structure factor S(k) is related
to Fa(k) by S(k) =F (k)/p. When Q=~, we
have c„=c„",and a and c are the free energy
and direct correlation function for the full interac-
tion (1) but with w(r) taken into account in RPA.
This hierarchy [(2)-(4)] is formally exact and it
must be integrated down to Q=O starting from

Q = ~ where the correlation functions of the u~
system act as boundary conditions. Integration of
these quantities allows us to follow how the correla-
tions induced by the attractive interaction in RPA
are modified by the effects of the nonlinear cou-
pling between density fluctuations induced by the
Fourier components of w(r) with k) Q. Notice
that for any value of Q one is considering a system
over all its length scales and there is no reduction of
degrees of freedom.

It is evident that any manageable approximation
must introduce some sort of decoupling in the
hierarchy. Since our equations are based on direct
correlation functions, there is no guarantee that a
certain approximation gives a radial distribution
function g (r) satisfying the core condition. We can
use, however, a trick that is a generalization of the
well-known optimization condition introduced by
Andersen and Chandler in the theory of liquids.
Suppose that the repulsive interaction vz (r) is just
the hard-sphere potential with diameter 0-. In an
exact theory the value of wo(r) for r & o. does not
affect any observable quantity but this is not neces-
sarily true for a truncated hierarchy. Thus we can
ask if we can redefine the interaction inside the
core,

W0(r) = w~(r) +B~(r), r & cr,

in such a way that for the Q system g~(r) = 0 for
r ( cr. This turns out to be possible and we find
that dB~/dQ must satisfy a subsidiary integral equa-
tion. This equation turns out to represent also an
extremum condition for the free energy as is the
case with the usual optimization condition. The
evolution of B0 induces additional terms in the
hierarchy and in particular the equation for c 0 now

i
reads

—d c ~(k)/dQ = M~(k) —Pfd"r A-„( r ) [dBO(r)/dQ ],

A-„( r ) = e'(' ' " + —,
' (27r ) df d q e' ' ' [F (q) ] (c 4o(q, —q, p, —p)

+2F ~(q+ p) [c 3~(q,p —q —p)]'}.

(6)

In the present case the boundary condition for c 0 at Q = ~ corresponds to the direct correlation function of
the fully interacting system (1) in ORPA.

We present now a summary of some results given by our equations. Full details will be presented else-
where. We may expect that at low density the direct correlation functions of high order can be approximated
by their low-density limit, the last term of Eq. (5). Indeed, if we substitute in (4) this low-density form for

and c P, Eq. (3) can be explicitly integrated and for Q = 0 we find the correct form
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c(r) =exp] —/8[v~(r) +w(r)] ] for the Ornstein-
Zernike direct correlation function. From the free
energy Eq. (2) one then finds the correct first virial
coefficient. If in the hierarchy we approximate c 0
with its ideal-gas value starting from n = m then the
truncated system gives the correct low-density ex-
pansion for c(r) up to order m —2.

In the opposite limit of high density the effect of
the many-particle correlations becomes essentially
irrelevant. In fact the strong effect of screening of
w(r) by the repulsive forces is manifest in (4)
because F(p) is very small in the region of small p
where Q(p) is significant. Therefore to lowest or-
der M0 can be considered as a negligible quantity so

that c 0(k) = c (k) but c (k) corresponds to the
ORPA that is known as an excellent approximation
for a fluid in the triple-point region.

We discuss now the region of the critical point
where S (0) = p 'F ~ = (0) && 1. Then also p
x F ~(k) will be large for small values of k and Q so
that the terms unity in the integrands of the hierar-
chy can be dropped in comparison to $(k)F0(k).
Similarly, terms proportional to FQ(k) have to be
kept only for k )Q, where F ~(k) = F 0(k), be-
cause for k( Q, F&(k) =F~( k)/[1 +P(k)
x F I2(k) ] is a bounded quantity. Then in this low-
momenta regime the hierarchy simplifies and, for
instance, the evolution equation for c 0 can be writ-
ten in the form

+x —2+ t7u 2 (x)B B g
Bln Bx

I

= —', (2w)

~fdic,

(u40 (x. —x. y. —1) —
2fur (x. y

—x —y) v/u20 (y+ x) |/u|~ (y). (7)

where the momentum integration is over the surface i yi = 1 with the limitation iy +x i & 1. Here we have
introduced the scaled functions

&g(x x ) Qn(d —2 +q)/2 —dc Q( g g) (g~ 0)

for n & 2 and u2~ (x) is defined in the same way in
term of c 0. The exponent q is defined as the con-
stant for which limg og [c (xg) c (0) ]
is finite at the critical point. The evolution equa-
tion (7) for u~~ and those for the ug are equivalent
to the RG equations which can be deduced from
the theory of Nicoll and Chang. This can be
shown by recasting our approximate hierarchy in

the form of a differential generator for the free en-
ergy A of an inhomogeneous system. In our case
this generator involves the second functional
derivative of PA with respect to the local density,
this being equal to c, in place of the local magneti-
zation as in the case of Nicoll and Chang. The
characteristic momentum Q corresponds to the
momentum shell of integration in the RG. Thus
the existence of a fixed point for our approximate
hierarchy implies a scaling form for the correlation
functions in the critical region. The critical be-
havior given by our approximate hierarchy can be
analyzed in the framework of the e = 4 —d expan-
sion and in fact, because of the equivalence already
discussed, we recover the e expansion for the criti-
cal exponents as obtained by RG technique for a
one-component order parameter. It is known that
to first order in e the presence of vertices of odd or-
der does not modify the Ising universality class.

So far we have not considered the effect of the
core condition. When we use (6) in place of (3) we
find that the extra term introduced by the core con-

dition vanishes in the Q 0 limit faster than the
other terms provided that

c 4~(q, —q, 0, 0) = B2c ~(q)/Bp2,

c 3~(q, 0, —q) = Bc ~(q)/Bp.
(9)

v ——, + —„a+ 0(e );

q = —,', ~'+ 0 (e'),

(10)

and these are equal to the Ising values to leading or-
der. An open question is if the basin of attraction

. of this fixed point also encompasses initial condi-
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These relations are satisfied by the exact correlation
functions and we can construct simple decoupling
schemes for the full c P and cP compatible with (9),
for instance

c 4~(q, —q, k, —k)

= —,
' [B2c 0(q+ k)/Bp + B e~(q —k)/Bp2]

and

c 3~(q, k, —q —k) = Bc ~(q+ k)/Bp.

When we use this closure in (4) we obtain a closed
equation for c 0 from which we can deduce the crit-
ical exponents in the framework of the e expansion.
These turn out to be

@=1+—,'e+O(e );



VOLUME 53, NUMBER 25 PHYSICAL REVIEW LETTERS 17 DECEMBER 1984

tions for realistic fluid Hamiltonians.
As a first step in studying the hierarchy for a fluid

in d = 3 we consider the simplest decoupling
scheme. We assume that Y) = 0 so that c 0(k)
= c ~(0) —bk + o (k ); moreover the coefficient b

is assumed constant. Taking into account that
c ~(0) = ti a~/t)p we find that the hierarchy
(2)—(4) truncates at the level of the first equation
and it turns out to be equivalent to a RG equation
derived by Nicoll, Chang, and Stanleyg for the Ising
model. It is known that it gives the first-order term
of the e expansion but not the second. We have
studied numerically the fixed point and the largest
eigenvalues A. ; for d =3. We find X&=1.451 and
A.2= —0.581 so that, from standard analysis, the
critical exponents turn out to be

y = 1.378, v = 7/2 = )tt ',

p=0344, q=0, 5=S,

and the first correction to the leading term for the
correlation length vanishes as ( T —T, ) 0

In conclusion, we have presented a generalization
of the theory of liquids based on the idea of relating
the reference to the fully interacting system
through the intermediary of a sequence of other
systems for which the nonlinearity of density fluc-
tuations is operating only up to a maximum length
scale Q ', beyond which the fluctuations are taken
into account in the random-phase approximation.
By letting 0 ' ~ one recovers the fully interact-
ing system. This approach generates a formally ex-
act hierarchy of equations for the free energy and
the direct correlation functions of successively
higher order. Systematic truncation of the hierar-
chy generates the correct low- and high-density lim-
its. In the critical region, and at small momenta,
the hierarchy becomes equivalent to the RG equa-
tions in differential form implied by the generator
of Nicoll and Chang. However, at variance with
respect to RG equations, our full equations (2)-(4)
describe the system over all of its length scales be-

cause we do not eliminate degrees of freedom. This
allows us to describe also nonuniversal properties
like the correlations at short range and the cross-
over to the noncritical region. All functions enter-
ing our equations have a manifest physical meaning
and the trick of optimization of the attractive in-
teraction inside the core in order to impose the core
condition can be be extended to our equations. As
first applications we find that the core condition
does not modify the leading terms of the e expan-
sion and a very simple approximation already gives
acceptable critical exponents in three dimensions.

Our equations need no rewriting in the case of
lattice-gas models also with an extended core. Our
basic approach is general enough that it can be ap-
plied to study the global properties of other systems
with a critical point like a binary mixture with a
consolution point. Moreover, it could be useful
also in noncritical problems when different charac-
teristic length scales are present, like in some liquid
metals.
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