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Existence of a Critical Tilt Angle for the Optical Properties
of Chiral Smectic Liquid Crystals
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The optical properties of single-domain chiral smectic liquid crystals have been theoretical-

ly studied as a function of the tilt angle. It is shown that structures with a particular value

H„„of the tilt angle, which depends only on the principal values of the local dielectric tensor,
have very peculiar behavior. In passage through 0„, a reversal of the polarization states of
the eigenfunctions and a drastic change of many optical properties occur.

PACS numbers: 61.30.—v, 42.10.Qj

The growing interest in the chiral smectic-C
phase and the discovery of new chiral liquid-crystal
phases' have recently stimulated the study of the
optical properties of helical periodic structures that
are more complex than the cholesteric ones. In
Ref. 3 it has been shown that the polarization states
of the optical Bloch waves propagating in locally
uniaxial structures are generally smooth functions
of the tilt angle, except at an angle 0„„,where an
inversion or a drastic change of polarization occurs.
In this Letter a full explanation of this interesting
feature is given, and the dependence of 0„, on the
other optical parameters is explicitly found. Fur-
thermore, the same study is extended to locally
biaxial structures, which more closely correspond to
the actual smectic liquid crystals.

As usual for chiral C smectics, 5 the liquid crystal
is considered a locally biaxial medium, with a spa-

tially uniform rotation of the dielectric tensor e

around a z axis, which is normal to the smectic
layers. Let m/2, 8 7r/2—, and 8 be the angles

between the principal axes 1, 2, and 3 for e and z,
E'], E2, 63 the corresponding principal values, and 0
the tilt angle of the structure. The model describes
cholesteric liquid crystals in the limiting case
8= sr/2 and homogeneous anisotropic crystals in

the case 0=0 and a~=&2. In the latter case the
eigenfunctions of the Maxwell equations, which are
generally Bloch waves, reduce to the ordinary and
extraordinary plane waves propagating in homo-
geneous media.

By making use of the 4x 4 matrix method, one
easily obtains from Maxwell's equations
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where q = 27r/p (p is the helix pitch), qz is the angle
between the 1 axis of the dielectric tensor and the x
axis, and
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Here m =K„c/ru, where K„ is the component of
the light wave vector orthogonal to the z axis. For
light entering the sample through a surface perpen-
dicular to the z axis,

m =n; sin0;,

where 0; is the incidence angle and n; the refractive
index of the external medium.

If the z-dependent part of the 4&& 4 matrix is con-
sidered as a perturbation, the unperturbed solutions
of Eq. (1) are the cr and 7r-p-olarized plane waves
which correspond to the ordinary and extraordinary
waves of a homogeneous crystal, and their wave
vectors have z components given by

K = (o)/c ) (bp), K = (o)/c ) (Atzap)' . (3)

This is a very crude approximation. However, it
should be noticed that the actual eigensolutions of
Eq. (1) are in general reasonably well approximated
by the unperturbed ones, except in the following
two cases.

(1) Near the Bragg reflection peaks, where a
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FIG. 1. Exact (solid lines) and approximate (dotted
lines) dispersion curves. e t

= e2 = 2, e3 = 3, 0 = 30',
0; = 45' in glass (n; = 2.3), p = helix pitch, A. = light

wavelength, k=K, /q The app. roximate K, values are
given by Eq. (3); for the exact ones see Ref. 9.

FIG. 2. Normalized differences between approximate
and exact wave vectors vs 0; for 0= 30', p/ij. = 0.6,
e&=e&=2, F3=3, p=hK/(Kt, —K2, ), where Kt, and
K2, are the exact eigenvalues of Eq. (1) and AK is the
difference between the approximate and the exact eigen-
value of each eigenfunction.

better approximation is obtained by a superposition
of forward and backward waves. We recall that in
addition to the Bragg peaks associated with each
eigensolution (referred to in the following as type
B), a further series of reflection peaks is present
(type C), which is common to both eigensolutions.
In Fig. 1 the exact and approximate values of K are
compared. The frequency range includes the first
two reflection bands, and a reduced Brillouin-zone
scheme is used. A good agreement of the K values
is indicative of a fairly good agreement between the
eigensolutions.

(2) Near a degeneration point of the unperturbed
solutions, i.e, when K =K . By taking into ac-
count Eqs. (2) and (3), this condition can be writ-

ten

m'(ap —e33) = 0.

This equation shows that degeneration can occur in
two distinct and very different cases.

(a) At normal incidence of light, where m
= n; sinH, =0. Figure 2 shows that for the parame-
ter values given in the caption the approximation
fails for 0; ( 10'.

(b) If ap = e33 i.e. , if

2(e2 stn 0+ e3 cos 0) —et (e2 sin 0+ e3 cos 0) —epe3 = 0. (4)

This case will be considered in more detail. In fact the tilt angle which satisfies Eq. (4) is to be identified
with the angle O„„where a reversal of the polarization states of the eigenfunctions occurs. One has

cos'0„„=—,
' + (

—(3+5'+ 5") + [ (3+5'+ 5") ' —8 (5'+ 5"+ 5') ] ' ') (85')

where

= —,
' ——,', 5' ——,

' 5"/5'+ —,', 5"+ —,', 5"'/5'+ O(5') + O(5") (5)

In both cases (a) and (b), better unperturbed ap-
proximations are the elliptically polarized waves ob-
tained by a suitable superposition of the cr- and 7r-

polarized plane waves considered before.
Some very significant differences between cases

(a) and (b) of degeneration are to be stressed. The
one of most practical interest is that condition (a)
can be obtained for any chiral structure by simply
changing the incidence angle, whereas condition
(b), which involves only the parameters e; and 0
which characterize the smectic structure, is satisfied
by specific smectic liquid crystals. For locally

uniaxial media, 5" =0, and Eq. (5) gives for 0„„a
value which is always close to the value of 56' given
in Ref. 3. More precisely, 0„„=54.7 in the limit-

ing case 5'=0, and 56.6' in the highly anisotropic
case 5' = 0.2. This means that 8„, practically
depends only on the local biaxiality of the structure.
In particular 0„, does not depend on the light fre-
quency (which can appear only indirectly through
the parameters e; for very dispersive media) and on
the incidence angle 0;. The fact that an inversion of
the polarization states of the eigenfunctions occurs
in the neighborhood of a tilt angle which is practi-
cally independent of the frequency of the incidence
angle, and, for locally uniaxial structures, of the an-
isotropy, was first noticed in Ref. 3. The present
approach gives a full explanation of it. In particular
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the independence of 0, is not obvious. An intuitive
argument is the following. The unperturbed solu-
tions are the same as those in a homogeneous
uniaxial crystal whose principal refractive indices n,
and n, are suitable average values of the dielectric
tensor components. For given values of Gi, 62, E3

such average values depend only on 0. The inver-
sion angle is the one which gives n, = n„and in this
case K = K, independent of 0;.

A further difference between cases (a) and (b)
lies in the extension of the nearly degenerate re-
gion, which can be evaluated by comparing the am-
plitudes MaI/c and atra/c of the perturbing terms
with the difference K —K Actuall. y in case (a)
the degeneration of the unperturbed solutions oc-
curs as a function of the angle of incidence 0;, and
the quantity K —K is not a very sensitive func-
tion of 0; near 0; = 0, because of the fact that its
derivative is zero at this point. On the contrary, in
case (b), where the degeneration occurs as a func-
tion of the tilt angle 0, the quantity K —K mono-
tonically changes with 0 near 0„,„. In fact
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FlG. 3. Polarization states (upper plots) and exact
dispersion curves (lower plots) vs 0 for e] ——e2 = 2, e3 = 3,
8;=60', p/X=0. 35 and 0.70 (left-hand and right-hand
sides, respectively; the first Bragg peak is at p/) = 0.48);
R = P, /P„where P, is the z component of the Poynting
vector and P, is the contribution to I', arising from the vr

components of the electromagnetic field. The two eigen-
solutions are represented, respectively, by solid and dot-
ted lines.
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FIG. 4. Reflectance spectra and exact dispersion curves vs p/lj. at the second-order Bragg reflection band for
e&=F2=2, F3=3, corresponding to 0„,=56.6'. Plots refer to 0=52', 57', and 62', respectively, for a sample 24 pitches
thick and for 9;= 60', k' and k" are the real and imaginary parts of K, /q; m-m, Ir-a. , a. -7r, and a--a- refer to the polarizer
and analyzer settings.
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where e is the mean value of E], 62, E'3. As a conse-
quence, very small variations of 0 near O„„corre-
spond to great variations of the eigensolutions. As
far as the polarization states of the eigensolutions
are concerned, a very drastic change occurs. This is
shown in Fig. 3, where a parameter 8, which gives
the relative amplitude of the 7r and o- components
of the exact eigenfunctions, is plotted versus 0 for
two frequency values and for 0; = 45'. A full inver-
sion of the polarization states occurs in a 0 interval
of few degrees around O„„which can therefore be
considered a very critical tilt angle.

The inversion of the polarization states of the
eigenfunctions gives rise to an inversion of many
important optical properties. In order to illustrate
this point the reflectance spectra as functions of the
frequency at the second-order Bragg reflection band
have been plotted for three values of 0 in the neigh-
borhood of (JM, (Fig. 4). The band is a triplet
whose lateral peaks correspond to the B-type insta-
bilities of the two eigenfunctions, while the central
peak corresponds to a C-type instability, which in-
volves both eigenfunctions. Let us consider for in-
stance the B-type instability which gives rise to the
left-hand side peak. It appears to be nearly absent
for 0 = O„„whereas it gives rise to a m-polarized re-
flected wave for 0 (O„„and to a 0--polarized one
for 0) 0„„. The opposite occurs for the other B-
type instability. The drastic change in the shape of
the central peak, where total reflection always oc-
curs, should also be noticed.

Structures having a tilt angle 0 = O„„may be of
some practical interest. We recall that one of the
most important properties of the cholesteric liquid
crystals is their apparent rotatory power. This oc-
curs where the eigenfunctions are nearly left and
right circularly polarized, respectively, a fact which

is related to the degeneration of the unperturbed
solutions discussed in (a). By considering that a
smectic structure with a tilt angle 0 = 0„,has nearly
degenerate unperturbed solutions at any incidence
angle, we can guess that such a structure could be
of some interest with respect to its rotatory power.
A further reason for interest comes from the fact
that the optical properties of these structures
strongly depend on their tilt angle. A small change
of this angle, due for instance to an external field or
to a temperature variation, can be easily detected by
optical methods.

For a review, see G. W. Gray and J. W. Goodby,
Smectic Liquid Crystals (Leonard Hill, Glasgow and Lon-
don, 1984).
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