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Analytic Approach to Phase Transitions in Lattice Gauge Theories
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The Hamiltonian formulation is analyzed in a basis of gauge-invariant loop states. A na-
tural geometric asymptotic approximation for the eigenstates of the Hamiltonian is developed
to identify the phase diagram of the theory. Satisfactory explicit calculations are performed
in the case of Z2.
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Considerable progress is currently being achieved
in lattice gauge theories. One now has numerical
evidence for confinement in SU(2) and SU(3)
gauge theories, ' chiral symmetry breaking in

QCD, 3 s and even valuable estimates of the meson
and baryon mass spectra. ' Unfortunately these
encouraging numerical achievements have not al-

ways been matched by a corresponding understand-
ing of the special features of lattice gauge theories
at the analytical level in spite of the progress
achieved in strong-coupling and weak-coup-
ling' " expansions, mean-field' approximations,
and variational methods. '

In this paper a simple analytical method is pro-
posed to deal with phase transitions in lattice gauge
theories. Although it may be generalized to deal
with any Z~ system and hopefully also with con-
tinuous Abelian and non-Abelian theories, only the
Z2 case will be considered. In spite of its simplicity,
the method reproduces the main results concerning
the phase diagram of the Z2 system either known
exactly by rigorous arguments or suggested by
Monte Carlo calculations. '

Quantum gauge theories are formulated in the
"large" Hilbert space of all field configurations.
This is the usual procedure for both continuous and
lattice gauge theories. Physical states are then asso-
ciated with equivalence classes of gauge-trans-
formed states. For some problems a more direct
characterization of physical states may be advanta-
geous. Recently' the present authors have pro-
posed to work in a basis of gauge-invariant states
~C) labeled by closed contours regarded as ele-
ments of the group of loops. ' Let us refer from
now on to this choice as the C representation. The
Hamiltonian formulation in continuous space for a
general non-Abelian gauge theory has been worked
out in the C representation, and it proved useful in
the discussion of several nonperturbative questions
including the confinement problem. ' This formu-
lation may be specialized to lattice gauge theories.
Iri fact the C representation is even more natural in
the lattice since all concepts and techniques associ-

(n ~( ) 2
—A/2 ge'

ace
(2)

The closed paths C are elements of the "Z2 ver-
sion" of the group of loops, an Abelian subgroup of
the group of loops where all elements verify
CC = 1. Hence the two orientations on C are
equivalent and a given link may appear only once in
a loop.

The relevant operators of the Hamiltonian for-
mulation in the C representation are Wilson's loop
operator,

w(c)ic') = icc), (3)

and its temporal loop derivative which for any
Abelian theory may be traded by the electric field
operator given, in the Z2 case, by

E(a) = [1—a(a) j/2, (4)

where a (h. ) is the operator that flips the spin at link
A. . The C states are eigenstates of the electric field
operator:

where N„ is 1 if X belongs to C and 0 otherwise;
The Hamiltonian associated with the gauge theory
is given by

(6)

ated with the group of loops may be rigorously de-
fined in discrete space.

The Z2 gauge theory provides a most elementary
illustration of the Hamiltonian formulation in the C
representation. For this system the "large" Hilbert
space is spanned by a basis of states

~n) = ~nt, n2, . . . , nA), (1)
where n& is a binary digit associated with link ) and
A is the total number of links in the lattice. Gauge
transformations are realized in terms of operators
that flip all spins attached to a given vertex. It may
be proven that the physical space is spanned by a
dual basis of states

~ C) which may be defined by
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where the magnetic part is given by a sum of Wil-
son operators over all plaquettes and the electric
part contains a sum over all links of the lattice of
the electric field operator. Equation (6) coincides
with Wegner's Hamiltonian' up to irrelevant con-
stants.

According to (3) and (5), the Schrodinger equa-
tion in the C representation may be written as

pg—,e(p, c)+Le(c)=Eq (c), (7)

where 'I (C) = (C iW) and L is the length of C.
According to Wegner' the phase diagram is

dominated by the asymptotic behavior of Wilson's
loop average which in the C representation is ob-
tained as a self-convolution of the ground state.
Hence we are interested in solving this equation for

large loops. To be more precise, let us define the
asymptotic region in the loop space as consisting of
those large loops that may be obtained by dilatation
of finite loops. Our purpose is to set the appropri-
ate asymptotic form of (7) in this region. In gen-
eral the eigenstates %(c) must depend on a com-
plete set of parameters providing a unique charac-
terization of the loop. The list may include L the
length, 3 the minimal number of plaquettes with
net border in C, the number of corners, the size
and relative position of "bottlenecks" (parallel
lines in C separated by one unit of the lattice), etc.
However, as we shall see, one may argue that only
L and A are relevant in the asymptotic region as de-
fined above. In this case the appropriate asymptotic
form of (7) for a lattice of volume V in d spatial
dimensions is

MV(L—+4,A +I) —2(d —1)L[4'(L +2,A +I) V(L +—4,A +1)]
—L [4'(L +2,A —1) —%(L +2,A + I ) ]

—(A —L) [%(L +4,A —1) —W(L +4,A +I) ] + @LE(L,A) = pEV(L,A), (8)

where M = Vd (d —1)/2 is the total number of pla-

quettes and p, = 1/p has been introduced for con-
venience.

The four first terms correspond to the action of
the magnetic part of the Hamiltonian. The first one
considers all plaquettes of the lattice as lying out-
side the minimal area of C and without contact with

its border. The second term corrects the first one
by taking into account the plaquettes hitting the
border of the loop. For each link in C there are
2(d —1) such plaquettes and these increase L only

by two units. The third term corrects the second
one since one of these plaquettes will make contact
with the minimal area of C erasing one unit of A.
At last, the fourth term corrects the first one by
considering the plaquettes hitting the minimal-area
region of C without contact with its border. The
count is incorrect for plaquettes hitting corners.

These could be taken into account by including
terms proportional to the number of corners. How-
ever, the number of corners remains fixed under
dilatations. Therefore the relative contribution
should be negligible in the asymptotic regio'n as
compared with the terms proportional to L and A.
Bottlenecks and many other configurations of finite
loops are also not counted in (8). However, these
configurations disappear by dilatation of the loop
and should not be incorporated in (8) which is as-

sumed to hold in the asymptotic region as defined
above.

Let us introduce

e = —
p, E/M,

which, according to (7), represents the average pla-
quette in the state iV) in the limit V ~. Equa-
tion (8) may be written in the form

2(d —1)L [V(L +4,A + I) —4'(L +2,A + I)]+L [W(L +2,A +1)—P(L +2,A —1)]
+ (A L) [W(L + 4 A + I)—q(L + 4 A —1)—]+p L 4 (L,A)

=M[%(L +4,A +1) —e%(L,A) ]. (1'0)

A possible method to deal with this partial finite-difference equation may be to introduce the Mellin
transform

q (L,A) =ffdg d~ G(g, ~)g'~"

to obtain a complete family of solutions of the corresponding partial differential equation for G((, q), and
use standard asymptotic methods to obtain the behavior in the limit M ~. This method leads to the one-
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FIG. l. Qe vs p, . Square dots are the transition points. FIG. 2. First derivative of the average plaquette vs p, .

parameter family of asymptotic solutions

(12)

where 0 ~y ~ 1 since we are looking for normaliz-
able states. x is defined in terms of y by

dx 2x [(I —x) [1+(2d—3)y ] —p,y )

dy y(1 —y')
(13)

x(0) =1,

and e is given by

e(y) =«'(y)y. (14)

It should be pointed out that a modification of
Eq. (13) by a global factor x ys on the right-hand
side should in principle be equally acceptable. In
fact this factor may be obtained by the changing of
L,A to L Lp, I4 I4 p in Eq. (8) . These shifts may
even be produced independently in the terms pro-
portional to I and A and should be undetectable
since (8) is assumed to hold in the asymptotic re-
gion. Fortunately this expected asymptotic ambi-
guity may be removed in a unique way. For o, A 1

the solutions of (13) do not exist for all y in (0,1)
in the strong-coupling region and the family does
not cover long-range excitations of the ground state
which physically must always be present. For P A 1

the solutions are not analytic at y =0. Hence
smoothness and full definition of the obtained fam-
ily lead us uniquely to (13).

For the ground state e is proportional to the free
energy and therefore may be used to label the
phases of the system. The best approximation for
the ground state is obtained, according to (9), when

one chooses the value of y that maximizes the aver-
age plaquette. This furnishes e as a function of p,
and the analysis of the phase diagram may be per-
formed.

Following this procedure one obtains for d = 3 a
two-phase system with a first-order transition locat-
ed at JM, =1 which is known to be the exact value.
For d ) 3 the transition point is located at

p, ,„= —, (d —1)

—[d+1+ [(d+3)(d —1)1' ] ', (15)

which behaves as —, (d —1) as d increases. The
discontinuity in the first derivative of the free ener-
gy becomes more abrupt as d grows. These results
are depicted in Fig. 1. For d = 2 one obtains a rath-
er different picture. As shown in Figs. 1 and 2, the
system undergoes a second-order transition at
p, =(&5—I)/4. The optimal value of y departs
smoothly from y =1 at the transition point [Fig.
3(a)]. This should be compared with the abrupt
change for d ~ 3 [Fig. 3(b)].

In summary one has obtained a satisfactory
description of )he phase diagram of the Z2 lattice
gauge theory for all d. Even an indication of a
roughening transition may be observed, deep in the
strong-coupling region, due to the change from ~
to 0 in the slope of e(y) at y =1 [Fig. 3(a) and
3 (b) ], which may induce nonanalytical behavior in
this region. Vacuum expectation values such as
monopole charge density, string tension, etc. , may
be considered within this method from (12) and the
exploitation of the geometric ideas just developed.
Preliminary steps in this direction seem satisfactory.
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(a)

d= 2 Hu= .1, 1.3 step .875 It is a pleasure to thank Dr. A. Gonzalez-Arroyo
for communicating to us part of his knowledge and
all of his enthusiasm for the lattice.
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FIG. 3. Qevs y. Square dots are the optimal values of
y. (a) d = 2; (b) d = 3.
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