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Path-Integral Derivation of the Dirac Propagator
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The Dirac propagator (yp —m) ' has been calculated as a path integral over a recently
proposed classical action. Thus a new formulation is given to the longstanding problem of
extending the path integration to discrete quantum spin as an integral over a continuous vari-
able.
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There is, to our knowledge, no derivation of the
propagator of a Dirac particle, (yp —m) ', as a
path integral over a classical action S in the form

f exp(i5), although a number of authors have

made interesting and ingenious stochastic check-
erboard-type calculations to account for the spin de-
gree of freedom. Feynman and Hibbs' consider in
the case of 1+ 1 dimensions, all particle paths going
in discrete zigzags to the right or to the left with
velocity of light. 2 This picture has recently been
generalized to 3+1 dimensions. The correspond-
ing stochastic process reached by analytic continua-
tion has been given recently. 4 Related methods
have been given by other authors. There is an
element of Zitterbe~egung in all these works. Still
others have started from quantum theory and, go-
ing backwards, tried to formulate the quantum
propagator as a path integral over some effective ac-
tion. " Grassmann numbers have also been used
to formulate path integrals for a free particle. ' No
classical action S was used in any of these calcula-
tions. In fact Feynman and Hibbs state that "for a
relativistic particle with spin (described by the Dirac
equation), the amplitude cannot be described by a
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I = ——(zz —zz) +p (x"—zy"z)ezyi'zA . (1)
2l P P'

Here X is a constant of dimension of action (e = 1)
and z is a classical four-component spinor variable
with z = z y its conjugate. The velocity is
represented by zy"z and the Lagrange multiplier p~
turns out to be the momentum. The Lagrangian
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simple path integral based on any reasonable ac-
tion" (Ref. 1, p. 264). Further, ". . .and because
spin takes discrete values it has been difficult to
suggest for it a continuous path subsequently to be
summed over so as to obtain the propagator" (Ref.
4, p. 182).

Since now a classical action has become avail-
able' which, by canonical quantization, gives the
exact Dirac equation, we show is this work that this
theory also gives in a very simple way the Dirac
propagator. Thus we show in a different way the
correctness of the underlying classical picture for
the Dirac equation, and we provide a solution,
within this theory, to this longstanding spin prob-
lem in the theory of path integration.

The classical Lagrangian is given by
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does not contain the mass m which reenters later as
the value of the constant of the motion
=p"zy„z. The classical motion contains a real Zit-
terbe~egung of the charge around a "center of
mass" whose orbital angular momentum is related
to the spin. Finally the proper time used in Eq. (1)
is that of the center of mass. The configuration
space of the classical particle is M4 8 C4 and
(x„,p~) and (z, —&z) are conjugate pairs of vari-

ables.
The basic physical difference between the Dirac

propagator and the nonrelativistic propagator lies in
the fact that the former is a matrix meaning that we
must specify not only the end points of the paths
(x„xb), but also the initial and final spin orienta-
tions of all paths (more generally all other internal
degrees of freedom of the system) .

We shall therefore consider path integrals in the
space M4 HEI C4 with end points x„xb 6 M4, and
z,zp 6 C4,

K(x, .x.)= —(i/e) f d K:p(x, .x. ).
where

1

K p(xz x ) = f8' z d) zpd) x8'p exp(i d Lp ). (2)

Here ~ is total transit time, the ~ integration takes the place of a sum'over the number of zigzags in Ref. 1

and we kept a Q' p integration for convenience, and

L& ———(X/2i)(zjj5p z —
zj35& z ) +p„(x"—

z&yg z ),

so that the Lagrangian (1) is given by

4
L= $ Lp.

a, p=1

In (2) the & x and N p integrations can be performed immediately, in the usual way, by writing the x and-
p-dependent factors of E

& as

+ d4p jp n+1

Jl '4 d x„jexp[i $ {p,+(xj xj t)„p—„jzpy~p z—]]
j=t (2rr) j=t j=t

= Jl exp[ip"(xb —x, ) ]exp( —ip z~y& z ), (5)p
)4 (P (d

where

xn+1= xb xo= xa

Consequently we have

i(';p (xz —x, ) = fd p (2p) K;p (x p ) ex p(ip (xz —x, ) pl,

and the reduced path integral is

T

K'p(x p)= fS'zpd)z exp(i f d Lp, ),

with

(6)

(6')

L& ———(1)./2i) (zp8& z —zp5p z ) p„zpyp)' z-
We write

zz —zz = d (zz )/d r —2zz

and incorporate the total time derivative into a measure on the internal space C4 defined by

n+1
& z& z = dz&zdz J exp ——,'A. z&5& z, ' exp —i7 m A.

j $
77

(6")

The mass is introduced at this point by the measure exp( —i rm/A, .), where i). is the parameter of dimension
of an action in (1). With

rb —r, =r = (n +1)e,
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the reduced path integral can now be defined by the limits
( ] [ tn+1

)
n+1

A"z(x p) = lim I II dzze dzz exp —i — ttexp i —zeez, (z, —z, ') —p„zpxpzz,n~ cx ~
~ i 2'

0
i r

= lim I g dzdpdz exp —ir —ff exp[ —
ized& ((i)tI + ep y)p z' —i )[8P z' ') ]. (8)

m

OO m'
t t

0

%e integrate over d z».
(

n+1 dz'
K;e(p x) =exp —i iim—JII,.

'
e]z', —lied, ((ill+zp ) ) ')e z' ']. (9)n-~ .

t I+ e/i)[. p y p
0

Now the 5 functions can be integrated, giving

n+1
1

K'tt (p y) = lim g exp —ir
n --, I + (e/i )t)p y

0

But the limit in Eq. (10) is just the exponential function

lim [I + (e/i h.)p y]"+' = exp[(r/i)t)p y].
n

Thus

K'& (p y) = exp i p— m . T
exp -i r =exp —i [p . y -—m ] (12)

which we insert in Eq. (6),

K;z(xz —x, )= Jdp(2 ) exp[iiz(xz —x, )z](exp[(i i) )(P —m)l], z

(p'= y"p„=y p ), or, in matrix notation,

K'(xz —x, ) = Jdp(2zz) exp[ip (xz —x, )]exp[(i /e)(p' —m)].

Finally we integrate over all possible ~'s to obtain the final result,

(13)

(13')

K(xb —x, ) = —— drK'(xb —x, ) = —— dr exp[ip . (xb —x, ) ]exp i (p' ——m )
QP . 7

(2~)4

, exp[i@ (x, —x, )]
2m d[r m

(14)

which is indeed the Dirac propagator for the electron. Our method also works for the electromagnetic cou-
pling of the electron, and the Green s function expansion of QED can be derived from the classical action
(1). This will be reported elsewhere.
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