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Pseudojellium Model for Surface Properties of Simple Metals
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A new simple method is presented for calculating properties of nonuniform real metals,
i.e. , surfaces, vacancies, small clusters, etc. The bulk metal is represented by a jelliumlike
homogeneous electron gas with an effective exchange-correlation energy that includes
electron-ion correlations. As an example, the method is applied to calculate surface energies.
One-dimensional calculations, with no further corrections for the lattice, give results in
reasonable agreement with experiment.

PACS numbers: 73.20.Cw, 68.40.+e, 71.10.+x, 71.45.Jp

We wish to present a simple approximate method
for studying the properties of nonuniform simple
metals. The method is applicable to surface ener-
gies and work functions, small clusters, surface
steps, vacancies, atoms on surfaces, etc. We will

present the method and work out one application by
way of example: the surface energy.

As used in this paper, the words homogeneous and
uniform have different meanings. A homogeneous
system has electronic and positive background den-
sity independent of position; i.e., jellium. A real
bulk metal without imperfections is inhomogeneous
but uniform, in that an appropriate average ionic
density, n;, is constant. The surface, vacancy, etc. ,
result in a nonuniform metal.

The essence of the method is a separation of the
nonuniform problem into two steps. Density-
functional calculations are first performed for the
total energy of the uniform bulk metal. One then
extracts from the results an effective "exchange-
correlation" energy. From this point, the positions
and character of the ionic cores are no longer need-
ed; the bulk will henceforth be replaced by a
jelliumlike homogeneous background, but with
exchange-correlation energy modified by the results
of the (in principle exact) calculations of the bulk.

The result of step one is the production of a
"pseudojellium" model with homogeneous positive
background, but with cohesive energy, bulk
modulus, and most importantly, internal chemical
potential, given by the actual bulk values. ' In step
two the calculation of the nonuniform system, e.g. ,
surface, vacancy, etc. , is performed; this step is
greatly simplified by use of the pseudojellium
model to represent the bulk.

This approach is conceptually similar to the
effective-mass theory for shallow impurities in sem-

iconductors, where the details of the lattice can be
processed into two relevant quantities, the effective
mass and the dielectric constant. In the present
case, however, we cannot offer a rigorous justifica-
tion for the accuracy of the method, since a com-
parison of the relevant length scales, the size of a
unit cell as compared to the electron density decay
length (e.g. , surface width), does not yield a small
parameter.

We begin the derivation of the model by defining

n, and n; as the average electronic and ionic densi-
ties of the uniform bulk metal. In terms of these
parameters, the volume of a unit cell is 0 =1/n;
The total number of electrons in one cell is On„
distributed within the cell with density n (r). The
average charge density p is given by p = n; Z —n„
where Z is the valence. In the interior of the bulk
metal, electrical neutrality requires that p =0; how-

ever, for our purposes we will regard n, and n; as
independent variables. The energy per unit volume
e(n„n;) and the density profile within the unit cell
n (r) can then be calculated as a function of n, and

n; with use of standard methods. For p &0, a
technical difficulty arises: e becomes infinite as a
result of the long-range interaction between non-
neutral unit cells. The appropriate correction is to
subtract off the intercell electrostatic energy of a
homogeneous charge distribution of density p, pro-
ducing an e(n„n;) that is finite and unique for all

ne nI''

The pseudojellium model is now introduced by
considering the exact e(n„n; ) to be broken up into
three components:

e(n„n;)
=n, t, (n, )+ U(n„n, )+e„',(n„n, ). (1)

Here n, t, (n, ) is the kinetic energy density of a
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U(n„n;) = (4'/5)Rw p, (3)

where Rw=Z' r, is the Wigner sphere radius.
Subtracting these jetlium kinetic and Coulomb ener-

gies from the total energy of the real metal defines

e„'„ the "exchange-correlation" energy density in

the pseudojellium model. The difference in
exchange-correlation energies between pseudojelli-
um and jellium is then

Ae„,(n„n;) = e'„,(n„n, ) —e„,(n, ). (4)

In applying the model to a nonuniform system such
as a surface, the simplest approach assumes that

n; =0 outside the metal and jumps discontinuously
to nI=n&, the bulk density at the surface. Then
4e„,= 0 in the vacuum. Inside the metal, it is very
useful' to express the n, dependence of 4e„, to first
order in p as

he„,(n„n;) = he„, (n„n;)

+ Ap, (n, —Zri, ) + 0 (p'). (5)

This is our major result. Here 4p, = p, —p,, is the
difference in internal chemical potential for the ac-
tual metal and for jellium.

In the nonuniform system, n, varies with posi-
tion. The electron effective potential V,ir( r ) is al-

tered by Ae„,. If we keep only terms to order p in

kE„, 5 V~ff r)he Jr)n„, is simply the constant value
AIM, inside the metal and 0 outside. Thus, V,ff has a
discontinuous step of amplitude Ap, at the surface

noninteracting electron gas,

t, (n, ) = —,', (37r'n, )'i',

and U(n„n; ) is the intracell electrostatic energy of
a uniform electron gas of density p. The exact ex-
pression for U depends slightly on the shape of the
unit cell, but is given with good accuracy by the
spherical cell value:

of the metal. The zeroth-order term b, e„,(n„n;)
gives a constant correction independent of local
electron density. While ensuring that the bulk has
the correct cohesive energy, this terms does not
alter V,«or the surface energy.

To use the method, we need to obtain values of
e„', and p, for real metals. To do this as simply as
possible, we performed a variational extended
Thomas-Fermi calculation to obtain e(n„n;) and
n (r) in a spherical unit cell, with the electron-ion
interaction represented by the Ashcroft-Langreth
pseudopotential. Recently, Wienert and Watson5

have obtained values of JM, that are probably more
accurate than ours, since they use the self-
consistent values of the Fermi energy of Moruzzi,
Janek, and Williams and shift these by a correction
to the muffin-tin zero. In Table I, we list values of
p, calculated by several workers. Also listed are the
jellium values, using the Wigner interpolation ex-
pression for the jellium e„,. Our values are in re-
markable agreement with those of Ref. 5 for the
high-density metals, and are about 0.6 eV more
negative for the low-density cases. From Table I, it
can be seen that the correction 5p, is quite small for
the dilute alkali metals and is large and negative for
the multivalent metals.

We turn now to the surface energy of real metals.
It is worthwhile to recall the results for uncorrected
jellium, as calculated by Lang and Kohn. For the
dilute alkali metals the surface energies are in
reasonable agreement with experiment; but for the
high-density multivalent metals, the jellium calcula-
tion fails completely, giving a negative surface ener-

To correct for this deficiency of the jellium
model, Lang and Kohn include the effect of the
ionic lattice by adding two terms to the surface en-
ergy: a classical cleavage term, representing the
change in lattice electrostatic energy, and a term

TABLE I. Calculated values of the internal chemical potential p, (in electronvolts).

Metals Jellium WW' HHb This Work

Al
Pb
Zn

Mg
Li
Na
K

Rb

2.07
2.30
2.30
2.65
3.28
3.99
4.96
5.23

2.37
0.97
0.97

—0.38
—1.59
—2.15
—2.37
—2 ~ 39

—0.4
—1.4
—2.2
—2.2
—2.1
—2.1

—0.8
—3.7
—1.4
—1 ~ 7
—19
—2.0
—2.2
—2.1

—0.20
—0.28
—0.34
—1.68
—2.66
—2.73
—2.80
—2.67

2336

'Wienert and Watson, Ref. 5. Heine and Hodges, Ref. 6.
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describing the first-order perturbation energy of the
electron-ion interaction. Inclusion of these terms
results in positive surface energies; however, a new
problem arises. As shown by Monnier and Per-
dew, the first-order results display a much larger
face dependence in surface energies and work func-
tions than is observed experimentally. Rose and
Dobson' included the effect of the ionic cores by
using an approximate linear response method, thus
allowing the electron density to relax to second or-
der around the cores. They found two interesting
results: First, the second-order contribution to the
cleavage energy almost cancels the first-order term.
Second, the surface energy becomes only weakly
face dependent.

We now seek to interpret the above results in a
way that motivates the pseudojellium surface calcu-
lation. High-density jellium has p, & 0; therefore
electrons try to spill out, leading to a negative sur-
face energy. The ions must be included, to provide
the additional cohesion required to hold a high-
density metal together. However, there is a much
smaller dependence of surface properties on the
specific location of the fully screened ions than is
obtained from first-order perturbation theory. In
particular, the three-dimensional screened charged
density has very small electric fields extending
beyond the surface, leading to a greatly reduced
cleavage energy.

In the pseudojellium approach, the screening of
the cores is in principle done exactly, as part of the
bulk energy calculation. However, in going over to
a one-dimensional model for the surface, the
cleavage energy becomes zero and there is no face
dependence. The above discussion suggests that
this liquidlike picture of the surface may be more
realistic than the first-order (i.e., unscreened) in-
clusion of the lattice.

The numerical procedure for the calculation of
the surface electronic density is quite similar to that
of Monnier and Perdew and Monnier et al. , " in
that there is a step in the effective potential at the
surface. In the present case, however, the step is a
direct consequence of the energy functional Eq.
(5); the calculated density exactly minimizes our
energy functional and is therefore fully self-
consistent. We use Eq. (5) for the correction to e„,
inside the metal, with our values for Ap, .

The results for the surface energies are shown in
Table II. The quoted experimental values are the
"recommended" values of Miedema. ' The sur-
face energies are positive in all cases, and compare
favorably with experimental values and with the
first-order-perturbation-corrected values of Lang
and Kohn. 7 In Fig. 1 we show the total effective
potential V,rr and the electrostatic contribution P to
V ff in both the jellium and pseudojellium models,
for Al (r, =2.07). The key points are the step in
V ff and the reduced dipole layer A$ for the pseu-
dojellium case. The work function 4 is also shown
in Fig. 1. The increase of 0.5 eV in 4 over the jelli-
um value brings our calculated pseudojellium value
(4.36 eV) into very close agreement with the exper-
iment. Additional results for work functions will be
reported elsewhere.

Concluding the discussion of the surface energy
calculation, we see that by including the pseudojelli-
um correction 4e„„one obtains good results for
surface energies and work functions from a purely
one-dimensional calculation, with no further
correction for the lattice.

The functional E„, used in this paper is local in
both electron and ion densities. Nonlocal correc-
tions, e.g. , Vn;, could in principle be significant,
since the calculated electronic density at the surface
varies on the same scale as the interatomic spacing.

TABLE II. Surface energies (in ergs per square centimeter).

Metal Jellium
First-order

perturbation' This work Expt. b

Al
Pb
Zn
Mg
Li
Na
K

Rb

—730
-130
-130

110
210
160
100

85

730
1400
440
640
380
210
140
110

840
600
460
600
390
220
120
100

1200
610

1020
790
530
260
150
120

aRef. 7. bRef. 12.
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for n; as well as n, near the surfac to obtain esti-
mates of ionic relaxation, surface acoustic phonons,
etc.
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FIG. 1. Contributions to the effective potential for
aluminum (r, =2.07) in the jellium and pseudojellium
models. Note the positive values of p, in the jellium
model.

One reason for suggesting that the local approxima-
tion is useful is that nonlocal corrections for pure
electronic E„, are fairly small, even though
electron-electron screening lengths are also on the
same scale as surface widths. Further, the calculat-
ed surface energy changes very little if the location
of the discontinuity in V,ff is shifted slightly from
the jellium edge; what counts is the magnitude Ap,

of the discontinuity.
One can use the model to solve self-consistently

&'~Permanent address; Departmento de Fisica, Univer-
sidad de Chile, Casilla 5487, Santiago, Chile.
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