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Charge-Density-Wave to Spin-Density-Wave Transition in the Extended Hubbard Model

J. E. Hirsch
Department ofPhysics, University ofCalifornia, San Diego, La JollaC, alifornia 92093

(Received 10 September 1984)

Monte Carlo simulations are used to study the charge-density-wave to spin-density-wave
transition in the one-dimensional Hubbard model with on-site ( U) and nearest-neighbor ( V)
repulsion. The transition is found to be continuous for small Uand first order for large U,
with the crossover occurring around U-3. The transition line deviates somewhat from the
theoretical prediction U= 2 V towards the charge-density-wave phase for intermediate cou-
pling. A qualitative explanation for the results is given by use of strong-coupling arguments.

PACS numbers: 72.15.Nj, 64.70.Kb

The properties of the one-dimensional electron
gas have been extensively studied in recent years. '
With use of renormalization-group (RG) tech-
niques a phase diagram, valid in the weak-coupling
regime, is obtained. Furthermore, strong-coupling
expansions provide additional information and in
general the results of these agree with the weak-
coupling predictions so that one can assume a
smooth matching of both solutions. The relations
between weak- and strong-coupling results are dis-
cussed in detail by Emery.

Recently developed quantum Monte Carlo tech-
niques allow the picture to be completed by provid-
ing quantitative information about the system in
intermediate-coupling regimes. These techniques
are most useful to study quantitatively phenomena
that occur away from the range of validity of either
weak- or strong-coupling expansions, and I discuss
here such a situation.

We will be concerned with the charge-density-
wave (CDW) to spin-density-wave (SDW) transi-
tion in the extended half-filled Hubbard model.
The Hamiltonian is

small chains. The other purpose is to study the
character of the transition. Haldane recently pre-
dicted, using weak-coupling arguments, that the
transition should change from continuous to first
order as U is increased. The simulations show that
indeed such a change in the character of the transi-
tion occurs, at a value of Uof approximately 3. A
similar change from continuous to first-order tran-
sition was recently found in the two-dimensional
classical xy model'; one may speculate that both
problems are related.

I have performed simulations on lattices of up to
N=32 sites, using the method of Ref. 6. The
number of time slices was taken to be J = N, and
the time slice size Dr =0.25, so that P=N/4. This
temperature is sufficiently low that fluctuations are
expected to be quantum rather than thermal. A
typical simulation involved 10000 sweeps through
the lattice, with measurements performed every
five sweeps.

To obtain a rough idea of the behavior of the sys-

tem, consider cycles in which the value of Vis first
increased and then decreased in small steps for
fixed U. Figure 1 shows results for the CDW order

c,'t =

cosmic;

t + ( —I ) tsinH c; l,

c,'l = —sinH ct t + ( —I ) roose c; t,

for 0=sr/2 interchanges SP and CDW correlation
functions and leaves the Hamiltonian invariant if
V=O, one can conclude that the CDW-SP transi-
tion occurs at V= 0 for all values of U.

One of the purposes of this Letter is to show that
such a symmetry does not exist for the CDW-SDW
transition. The simulations clearly indicate small
deviations from the U=2V line for intermediate
values of U. This was also found recently by Four-
cade and Spronken from exact diagonalization of
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H= —tx(c, c,+t +H.c.)+ UXn;in;l+ Vxn;nt+t
i, cr 1 I

with ni= ni~ + ni~. Both weak- and strong-cou-1,2

pling7 theory predict the CDW-SDW transition to
occur at U=2V. One may speculate that a sym-

metry of the model forces the transition to occur at
U= 2 Vfor all values of U. Such a situation occurs
for the transition between singlet pairing (SP) and
CDW phases for U ( 0: Both weak- and strong-
coupling theories predict the transition to occur at
V = 0. In addition, because the symmetry
transformation
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for U=2, an, 4 d 6 Note that the transition does
hl at V —U/2. As Uis increased, theo g

transition ebecomes sharper and wider ys
t or-cles are obtaine in

'
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'
dicating that it is turning firs

However, the presence or absence of hys-
teresis does not provide a precise quaantitative cri-

S(q) = —X exp[iq(R; —R, )](n;n, )
NIJ

and the zero-frequency SDW susceptibility

(4a)

terion a oub t the character of the transition since it
is also dependent on the speed with which one
sweeps through the transition.

To accurately determine the transition point, we
study the behavior of correlation functions for dif-
ferent size lattices, in particular the CDW structure
factor

(4b)
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If we scae e sp1 th s atial size N and the inverse tem-
willperature I yP b the same factor, S(q=m) wi

diverge linear y wi1 'th N if we are in the CDW phase
and X q=a) will diverge linearly in the SDW

1 Fi . 2 shows results forphase. As an examp e, ig.
V=1.1 the system is still clearly in the

( )
'

SDW phase, since X(q) diverges and, q is a .

estimate the transition poin
Similar calculations yielded for the transition point

5 and 2.163 for U= 3 and 4, respectively.
' '

n we look atTo study the character of the transition w
of the CDW order parameter. Figure 3

transition is clearly first order: the CD an
hases coexist, an d the relative strength of the

=0 d —0.5 shifts as Vis changedeaks at m =0 an m—
3.1625. For U= 3, we see still somefrom 3.15 to

evidence o a weaf eakly first-order transition a
=1.675, as a roa peabroad eak around m = 0.25 and some
indication of another peak around, as shown in

F th alues of V no coexisterice was
found. For ess anUl th n 3 I do not find coexistence
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FIG. 4. Histogram of the CDW order parameter for
U= 3, V= 1.675. The three-peak structure indicates that
the transition is still weakly first order here.
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FIG. 3. Histograms of the absolute value of the CDW
order parameter, Eq. (3), for V=6, and two values of V

on a 32' 32 lattice. The double-peak structure indicates

that the transition is first order.

or all singly occupied sites (SDW), with energy NV,
so that the transition occurs at U= V/2. Consider
now the system close to the transition for V ) U/2,
i.e., in the CDW state. The low-lying excitations
are "droplets" of the SDW phase, with energy
e(n) = V —n(U —2 V) for a droplet of size n Vis.
the surface energy, which is the dominant term for
small n. If we now let V become smaller than the
critical value U/2, there will be a critical droplet
size n«, ,= V/(U —2 V) such that droplets with
n ) n„;, are energetically favored, and the system
will tunnel to the other phase by nucleation. This
clearly describes a first-order transition. For a finite
value of the hopping t, the droplet energy is

of both phases. I conclude that the transition be-
comes first order around U= 3, or slightly below,
and becomes rapidly strongly first order as U is in-
creased.

Figure 5 summarizes the results for the CDW-
SDW transition. The SDW region is slightly larger
than predicted by the U=2 V line, and the transi-
tion changes from continuous to first order around
U=3.

We can understand the numerical results qualita-
tively starting from strong-coupling theory. For
large Uand V, we can neglect the effect of tand the
ground state consists of either pairs occupying alter-
nating lattice sites (CDW) with energy E= NU/2,

V 2

FIG. 5. Phase boundary between CDW and SDW re-
gions. The solid line is U=2V, the dotted line the
strong-coupling prediction. The dashed and solid lines
connecting the Monte Carlo points indicate continuous
and first-order transitions, respectively.
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U 2t
EcDw = N +

2 3V—U' (5)

In the SDW phase, we obtain, to second order in t,

an effective Hamiltonian describing a Heinsenberg
antiferromagnet, with J,rr= t /( U —V), so that the
ground-state energy, from the Bethe-Ansatz solu-

tion, is

4t2 ln2
Esnw = N V+ (6)

For U=2 V, EsDw & EcDw so that the system is in

the SDW phase. This happens because of the
higher entropy of the SDW phase. For t=0, the
CDW ground state is only doubly degenerate while
the degeneracy of the SDW state is (/~2); as t is

turned on, it lifts this large degeneracy and lowers
the energy more than for the CDW phase. By
equating the energies of both phases, a strong-
coupling phase boundary is obtained, shown as the
dotted line in Fig. 5. [The difference between V

and U/2 in the denominators of Eqs. (5) and (6) is

lowered by the kinetic energy term, since a droplet
of size n can occupy n+ 1 sites. The kinetic energy
lowering is proportional to t and largely independent
of the size of the droplet, so that one can think of it
as a surface term. It plays a role analogous to the
entropy of the droplet boundary in a classical
model. The energy of a droplet is then e(n) = V
—ct —n ( U —2 V) with c a constant. For V —t, the
two surface contributions cancel and it becomes ad-

vantageous to nucleate many droplets of arbitrary
size as Vis reduced below U/2, so that the transi-

tion becomes continuous.
We can also understand the deviation of the

boundary line from the U=2 V line in strong cou-
pling. The energy of the CDW ground state to
second order in tis

neglected for consistency. ] It can be seen that the
numerical results do not yet make contact with the
strong-coupling results in the parameter range stud-

1ed.
In summary, I have for the first time studied the

change in the character of a transition in a quantum

system using Monte Carlo simulations: I showed

that the CDW-SDW transition in the Hubbard

model changes from continuous to first order as the
interaction increases. I have also obtained accurate
values for the transition point for intermediate cou-

pling values, and showed that it deviates from the
V= U/2 line. The deviation, however, was found
to be remarkably small for all values of the cou-

plings.
I am grateful to D. Haldane for a stimulating con-

versation on the character of the CDW-SDW transi-

tion. This work was supported by the National Sci-
ence Foundation under Grant No. DMR-82-17881.
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