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Bifurcation Superstructure in a Model of Acoustic Turbulence
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A model of acoustic turbulence is investigated for its bifurcation structure by the calcula-
tion of spectral as well as ordinary bifurcation diagrams and (subharmonic) attractor maps.
A superstructure resulting from nonlinear resonances is found with period-doubling Feigen-
baum direct cascades and Grossmann inverse cascades as fine structure. Connected with the
superstructure is a new family of periodic chaos with a different type of chaos belonging to
each basic subharmonic period of oscillation.

PACS numbers: 47.55.Bx, 43.25.+y, 47.25.Mr

When a liquid is irradiated with sound of high in-
tensity it may rupture to form bubbles or cavities.
The phenomenon is called acoustic cavitation' and
is accompanied by intense noise emission, the
acoustic cavitation noise. The noise seems not to be
due to a statistical rupture process in the liquid but
to be of deterministic origin. The evidence stems
from the subharmonic route to chaos (broadband
acoustic noise) which is observed when the sound
pressure amplitude (taken as the control parameter)
is raised. Thus an example of acoustic turbulence
had been found experimentally. 2

The question left is how to describe the experi-
ment theoretically, in order to get a deeper under-
standing of the nature of the phenomenon. This
paper investigates a theoretical model which,
although relatively simple, displays diverse routes
to and through chaos and complicated bifurcation
structures. As is made evident below these may be
explained as resulting from a superstructure of non-
linear hysteretic resonances with Feigenbaum
direct and Grossmann inverse cascades as fine
structure. In the chaotic regions the solutions of

the model can also be transformed via subharmonic
Poincare maps into one-dimensional quadratic-
looking maps. This connection is considered the
main proof that the model belongs to the class of
deterministically chaotic systems.

The model is obtained by a set of simplifying as-
sumptions to make it tractable. In the experiment,
once the rupture process has started, thousands of
tiny bubbles are generated, oscillating and moving
in a complicated manner. As a first approximation
the mutual interaction of the bubbles is neglected.
Then only the dynamics of a single bubble in a
sound field needs to be considered. As a further
approximation translational motions are neglected,
and the bubble is taken as spherical. Even this sys-
tem is far too complex to be written down easily as
a result of heat and mass transfer across the boun-
dary of the bubble. When these effects are neglect-
ed a reasonable model for an oscillating spherical
bubble in a cold liquid can be formulated. 7 It is
given by a highly nonlinear ordinary differential
equation of second order for the radius R of the
bubble as a function of time t:
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U is the bubble wall velocity, C is the sound velocity at the bubble wall, and H is the free enthalpy which for
water is given by
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A, B, and n are constants (A = 3001 bars, 8 = 3000
bars, and n = 7), and po is the density at po
(p()=0.998 g cm, p()=1 bar). The pressure
p (R) at the bubble wall is given by

I

where po is the static external pressure (1 bar), R„
the equilibrium radius of the bubble, o- the surface
tension (72.5 dyn cm ), y the ratio of the specific
heats of the gas in the bubble (1.33), and p, the
viscosity of the liquid (0.01 P). The pressure at in-
finity p is taken as p =po —p, sin(2rrf, r ), with

p, the acoustic pressure amplitude of the applied
sound field and f, its frequency. The sound veloci-
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FIG. 1. Spectral bifurcation diagram of bubble wall
motion for a bubble with radius at rest of 8„=100 p, m
driven at a frequency of f, = 23.56 kHz. The sound pres-
sure amplitude p, is raised from 0 to 14.8 bars in 40 ms
(photograph from a color graphics terminal).

30

ty in the liquid at the bubble wall is given by

C = [Ca + (n —1)H]', with Ca= 1482 m/s.

The above model has been investigated for its
sound radiation and resonance behavior in the spir-
it of earlier work and the first results connecting it
with the experiments have been given. ' To follow
as closely as possible the experimental procedure
the bubble, described by Eqs. (1) to (3), is subject
to an increasing or decreasing sound pressure am-
plitude p, . The numerically obtained radius-time
curve is transformed into a series of short-time
spectra as were the pressure-time data of the experi-
ment and plotted in the same way as the "theoreti-
cal visible noise. " Only the bubble radius is con-
sidered here and not the sound radiated, but this
does not affect the subharmonic bifurcation struc-
ture as the radiated sound is directly coupled to the
radial motion. We suggest calling this kind of plot a
spectral bifurcation diagram It ma.y be used with any
chaotic system and not just noise2 or bubble radii.

Figure 1 gives an example of a calculated spectral
bifurcation diagram for the following parameters:
bubble radius at rest R„=100 p.m; driving frequen-
cy f, = 23.56 kHz (a value used in experiments);
and sound pressure amplitude p, raised from 0 to
14.8 bars in 40 ms. Each single spectrum has been
calculated from 2K data points comprising 0.68 ms.
By shifting the window of 2K data by 1K in the data
base of calculated radii a new spectrum is obtained
and plotted every 0.34 ms. The resolution in the
frequency domain is —„ofthe driving frequency.
The individual spectra are normalized to the strong-

est line in the spectrum, in this case always the line
at the normalized driving frequency 1. The gray
scale unfortunately does not give a good representa-
tion in print of the relative intensities of the spec-
tral lines (compare Ref. 2). Thus we are now work-
ing with color graphics. These, however, are not
reproducible here. A quite complicated behavior is
observed with a period-doubling bifurcation se-
quence to chaos, a window in the chaotic region,
and then, starting at about 20 ms (7.4 bars), a
second period-doubling bifurcation sequence. The
apparently chaotic bands near 1 and 7 ms are due to
transients and are not of importance here. The
second sequence we suggest calling a subharmonic
period-doubling bifurcation sequence because it is
not a window in the chaotic region connected with
the first sequence but has its origin in a new attrac-
tor of basic period 2T, = 2/f, (called a subharmonic
resonance in nonlinear oscillator theory9) which
takes over stability from the chaos of basic period
T, and then undergoes itself period doubling to
chaos of basic period 2T, . Our nomenclature infers
that the seemingly similar spectra at about 7.5 and
25 ms are of different origin. This is indeed the
case, as can be shown by recourse to the resonant
properties of the system, i.e., by tracing back the
oscillation in parameter space (f„p,) to the corre-
sponding resonance peak at lower driving pressure
amplitudes p, . It then becomes evident that the
second sequence starts from a different resonance
than the first one. A full projection of the traced-
back bifurcation diagram in (R,f„p,) space cannot
be given because of computer-time limitations. As
the resonance to which the oscillation at about 25
ms can be traced back is a subharmonic resonance
of order —, (see Ref. 9 for the definition) this oscil-
lation happens to be of doubled period. Depending
on the order of the resonance, period tripling, quad-
rupling, and so on may and does occur (compare
Fig. 2 below).

Many spectral bifurcation diagrams have been
calculated which lead to the following picture of the
bifurcation properties of our model. In the (f„p,)
parameter space many period-doubling Feigenbaum
direct cascades and Grossmann inverse cascades are
encountered. They appear as distinct entities and
are therefore ca11ed Feigenbaum-Grossmann objects.
The question of what governs the distribution of
these objects in parameter space can be answered by
the observation that they adhere to the resonances
of the system. The resonances thus impose an or-
dering on the appearance of Feigenbaum-Gross-
mann objects, i.e., a distinct bifurcation superstruc-
ture.
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FIG. 2. Bifurcation diagram of a bubble with a radius
at rest of R„=230 p, m. Frequency of the driving sound
field is f, = 23.56 kHz. The sound pressure amplitude is

increased in steps of 0.1 bar. The scattered points that do
not fo11ow the obvious pattern are due to transients that
have not yet died out (a result of computer-time limita-
tions) .

The scenario put forward above is not considered
to be a specialty of the above model but to be a gen-
eral (in the chaos language, universal) feature of
most driven nonlinear oscillatory systems. This con-
jecture gets more support from experiments and
calculations with a driven semiconductor oscillator"
or Toda oscillator. ' The so-called self-replicating
attractor of Brorson, Dewey, and Linsay" is conjec-
tured to belong to resonances of basic periods 1, 2,
3, 4, and 5, each with its own separate type of
periodic chaos. The driven Toda oscillator'

x+rx+ (e"—1)=a coscot

is an equation that we believe will become of funda-
mental importance in the area of nonlinear oscilla-
tions as a result of its simplicity. Recently Risken'
encountered this equation in the context of quan-
tum optics when simplifying a set of laser equa-
tions. Equation (4) as well as the experiments'z
show different basic periods and their period dou-
bling to separate types of chaos. One result then is
that the bifurcation structure of a driven dissipative
nonlinear oscillatory system is composed of many
Feigenbaum-Grossmann objects, distributed in
parameter space as a kind of elementary fine struc-
ture according to the resonance properties of the
system in question.

To test our ideas, also ordinary bifurcation dia-

grams have been calculated via the Poincare return
map. In these diagrams the radii of the bubble in
the Poincare plane of section are plotted versus the

sound pressure amplitude. Figure 2 gives a bifurca-
tion diagram for a bubble with a radius at rest of
R„=230 p, m in a sound field of frequency

f, = 23.56 kHz. First a period-1 oscillation (in units
of T, =1/f, ) is stable; then a jump occurs to a
period-2 oscillation. The first subharmonic reso-
nance has taken over before the period-1 oscillation
has found its way to chaos and even to the first
period-doubling bifurcation. The subharmonic os-
cillation of basic period 2 then bifurcates by succes-
sive period doubling to chaos. Near 5 bars the
second subharmonic resonance of basic period 3
takes over, which again bifurcates to chaos. This
diagram strongly resembles those of Bror son,
Dewey, and Linsay" and Klinker, Meyer-Ilse, and
Lauterborn, ' and fits into the resonance scenario
developed above.

Next, what we suggest calling attractor maps have
been calculated as a check of the chaotic properties
of the oscillation. As an attractor map we define
the map which is given by the approximate curve
that may be obtained when one coordinate (say x)
of a point on an attractor in a Poincare plane of sec-
tion is plotted versus the preceding one for a suffi-
cient number of (usually consecutive) pairs, i.e. ,

x„+,——7r,P(x„,yk), where P denotes the Poincare
return map and vr& the projection on the first entry
of P. The first known example of an attractor map
is the well-known Lorenz map given by a hatlike
function. '

It is found that attractor maps may consist of
several separate pieces. The number is connected
with both the basic period of the attractor from
which chaos originated and the inverse cascade of
split chaotic regions of Grossmann. In the fully
developed chaotic region which occurs after period
doubling and inverse cascade the number of
separate pieces of the attractor map is the number
of the basic period from which chaos originated.
Thus in the case of the R„=230-p, m bubble and a
sound pressure amplitude of 7.4 bars (compare Fig.
2) we get a three-piece attractor map, whereas an
R„=100-p,m bubble at 11 bars yields a two-piece
attractor map. By the definition of a subharmonic
attractor map of order m through xk+ ——rr, P (xk,
y„),where P~ is the m th iterate of the Poincare
map, and the plotting of xk+~ vs xk, a one-piece
map is obtained with a quadraticlike maximum. An
example is given in Fig. 3, where rk+2 is plotted
versus rk for a 100-p,m bubble at 11 bars sound
pressure amplitude. Here r is the radius normalized
to the maximum radius encountered in the se-
quence. %e have several examples that show that
when the inverse cascade is fo11owed in the direc-
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FIG. 3. Subharmonic attractor map of order 2 for the
normalized radius r = R/R, „,R,„=546 p, m. R„=100
p, m, f, = 23.56 kHZ, p, = 11 bars, Poincare plane of sec-
tion at cot = 155'.

tion of the splitting of chaotic regions the attractor
map also splits, which may be reconciled by using
the (m && 2")th iterate of the Poincare map where n

is the number of splittings that already occurred in
the inverse cascade.

In this paper we have investigated a theoretical
model of acoustic turbulence and found a connec-
tion between nonlinear resonances and the struc-
ture of bifurcation diagrams. This connection is
conjectured to be a general (or universal) feature of
driven dissipative passive nonlinear oscillatory sys-
tems. The nonlinear resonances impose a super-
structure on the bifurcation behavior of the system.
Feigenbaum direct and Grossman inverse cascades
occur as fine structure which may be (partially)
suppressed by the gross hysteresis features from the
superstructure.
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