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Pattern Formation in Diffusion-Limited Aggregation
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The diffusion-limited-aggregation model is generalized in order to take into account the
surface effects playing an essential role during most of the growth processes. With variation
of a parameter of the model the geometry of the clusters generated in the Monte Carlo simu-
lations gradually changes from the randomly branched diffusion-limited-aggregation clusters
into compact, nearly regular, snowflakelike patterns. The deposition of particles along a line
results in patterns similar to those observed in the experiments on directional solidification.

PACS numbers: 05.40.+j, 05.50.+q, 64.60.—i

Patterns formed by nonequilibrium growth pro-
cesses such as aggregation' or dendritic-crystal
growth have attracted great interest recently. One
of the main reasons for this interest is that the in-
vestigation of aggregates and dendritic crystals has
much practical importance, since they appear in a
wide range of phenomena in science and technolo-
gy. Second, the theories for such nonequilibrium
processes have raised a number of unsolved funda-
mental problems about the structure of aggregates
and the mechanism by which a pattern is spontane-
ously selected by a growing crystal. A simple aggre-
gation model giving direct insight into a pattern-
forming process is expected to contribute to the
understanding of this extensively studied phenom-
enon.

In the diffusion-limited-aggregation (DLA) mod-
el randomly branched, sparse clusters are generat-
ed as diffusing particles stick to the surface of the
growing aggregate. The density correlations decay
algebraically in these clusters, i.e., there is no
characteristic length within one large aggregate and
it can be described by its fractal dimension. 4

Although —as it was discussed by Witten and
Sander —the DLA model is related to the equa-
tions describing dendritic-crystal growth, the regu-
larity of the patterns observed in the experiments
on growth of crystals in undercooled melts has not
been found in DLA. In an attempt to account for
the surface tension, Rikvold5 used a finite-
screening-length stochastic model for the cluster
growth and obtained compact clusters but without
any regular shape.

The patterns appearing during nonequilibrium
crystal growth result from the competition between
the nonlocal diffusion field amplifying the growth at
places where the crystal bulges deeper into the un-
dercooled liquid and the surface tension which
favors flat interfaces. In the theory of pattern for-
mation during crystallization elaborated by Langer

and co-workers, the regular pattern of the crys-
tals grown under nonequilibrium conditions has its
explanation in the marginal-stability principle. This
conjecture is in good agreement with the experi-
mental results but it has not been rigorously proven
yet. In numerical calculations based on theoretical
models' " for the interface development, some of
the main features of the dendritic-crystal growth
were found. Realistic patterns, however, have only
been obtained in models which assume that the
motion of a particular point of the interface de-
pends merely on the local environment of that
point. Models of directional solidification have also
been studied both theoretically and numerically'
and interface shapes similar to those observed in
the related experiments' were obtained.

The main problem addressed in this paper is the
following: What is the relationship of the above
two approaches? How does a regular pattern
emerge from a purely random process? In this
communication a simple diffusion-limited-aggre-
gation model is presented in which both the random
and the regular behavior appears. Changing a
parameter one is able to show —for the first time—how in a Monte Carlo simulation of the same
model both low-density fractal clusters and compact,
nearly regular snowflakelike patterns appear spon-
taneously. The process analogous to directional
solidification can also be studied leading to a pattern
with a characteristic wavelength A. . The direct
simulation of the pattern-forming process allows
one to draw a number of important conclusions
about the nature of this phenomenon.

The model investigated in this paper is a generali-
zation of the DLA model in which randomly walk-
ing particles launched from distant points stick to
the surface of the growing cluster when they arrive
at a site adjacent to the aggregate. In addition to the
above process corresponding to a nonlocal diffusion
field, in the present model two further rules are in-
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troduced in order to take into account the surface
effects. (i) The sticking probability of the particles
arriving at the surface of the aggregate is assumed
to depend on the local curvature of the surface. If
the particle does not stick to the surface it continues
diffusing; thus the growth rate is reduced at places
with large interface curvature. (ii) After a particle
has been allowed to land, its position is relaxed to
one of the nearest- or next-nearest-neighbor sites
with the lowest potential energy (with the largest
number of occupied nearest neighbors).

The above model combines two methods: first, a
direct simulation of the diffusion motion of indivi-
dual aggregating particles and second, a Monte Car-
lo approach to the solution of the continuum equa-
tions for the solidification problem. Correspond-
ingly, the sticking probability rule is an approxima-
tion to a form of the Gibbs-Thomson relation
which is used as a boundary condition in the contin-
uum models. On the other hand, surface relaxation
(rule ii) simulates a microscopic process, namely,
the dynamic reshuffling of molecules at nonfaceted
solidification interfaces. Without surface relaxa-
tion, randomly ramified structures are generated,
with many holes and an approximately constant
density p=0.6. Going to nearest-, next-nearest,
and third-nearest-neighbor relaxation results in a
smoother interface and disappearance of holes, giv-

ing in the latter case almost perfectly compact clus-
ters.

The actual simulations were carried out on square
lattices. In the directional-growth case, 400 cells
were used with periodic boundary conditions. The
local curvature of the interface at a lattice site r was
characterized by the number of particles NI belong-
ing to the aggregate and being within a cell of size
1X1 centered at point r. Obviously, the case nI
= NI/I « 1 (where nI is the normalized value of
NI) corresponds to a large positive curvature, while
for nI = 1 the local geometry can be interpreted as
corresponding to a large negative curvature. For
the dependence of the sticking probability p (nl ) on
the curvature, the simplest choice was made; it was
assumed that p (ni) depended on nl linearly, name-

ly

P (n, ) =A (n, —np) +8,

where n p
= (I —1)/2l corresponds to a flat interface

touching the point r at which the particle contacts
the surface. Of course, if (1) gave p(nl) ) 1 I as-

sumed that p (nl ) = 1. For the case when the stick-

ing probability obtained from (1) was less than a
small constant C=0.01, the value p(ni) = C was

used to keep the growth process going on even for
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small ni, thus saving computer time. However, the
parameter C does not play any significant role and it
is enough to change either A or B to see crossover
in the behavior of the system. The size of the cell,
I, at the surface in which the number of particles
belonging to the cluster NI was counted was equal
to 9 or 11 in most of the cases. For a fixed curva-
ture (fixed nI), the sticking probability increases
linearly with 3 just as the local melting temperature
in the Gibbs-Thomson condition changes linearly
with the surface tension y. In this respect A and
—y are analogous; however, the direct calculation
of a measurable y would require more details speci-
fied in the present model. The expression (1) for
p(nt) is not expected to satisfy detailed balance,
since the microscopic events (sticking to the clus-
ter) are not reversible in this model.

Figure 1 shows the growth of a cluster starting
from a single seed particle. The choice A =5.0,
B = 0.5, and 1=9 results in a cluster which is very
much different from the diffusion-limited aggre-
gates and shares some features with the ice crystals
formed in glacier cavities. ' Because of the sur-
face-curvature-dependent sticking probability, the
random branches typical for a DLA cluster do not
appear. Recently it has been shown' "' that an-

FIG. 1, Typical cluster of M =24000 particles grown
from a seed particle. Only the surface sites (those which
have less than four occupied nearest neighbors) are plot-
ted. The parameters in the expression for the curvature-
dependent sticking probability were A = 5.0 and 8 =0.5.
The earlier stages of the growth process at M = 500,
M = 3000, and M = 12 000 are also shown.
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isotropy plays a crucial role in the formation of pat-
terns in dendritic solidification. The fourfold
snowflake shown in Fig. 1 is a result of the anisot-
ropy imposed in this model by the square lattice,
since the condition (I) for p (n~) does not depend
on the local orientation of the interface. This kind
of anisotropy is generated by a simple mechanism:
When growing a nearly circular object on a square
lattice layer by layer [at early stages this process is

preferred by Eq. (I)], one inevitably arrives at an
approximately square shape. Then the straight
edges of this square become unstable against per-
turbations having curvature comparable to the tip
radius of the corners (see next paragraph). Howev-
er, it is simple to introduce an explicit anisotropy
into the model by definition of an orientation
dependent p(nl) which corresponds to an aniso-
tropic surface tension used in the continuum
models. ' "' The clusters obtained with an in-
creased sticking probability along the axes or the di-

agonals of the square lattice have sharper tips and
more regular shape. In Fig. 1 the different stages of
the growth process are identified by the number of
particles in the cluster, which is not the same as
keeping track of the physical time. A possible way
to introduce direct time dependence (and to mea-
sure the tip velocity of the dendrites) is to start the
process with many particles diffusing simultaneous-
ly and sticking to the surface of the growing aggre-
gate placed at the origin.

The role of anisotropy is expected to be less im-
portant in the series of Monte Carlo experiments on
the deposition process' '9 along a line of length L.
In Fig. 2 clusters made of diffusing particles depos-
ited on a line are shown. To demonstrate how the
change in the value of the parameter 3 leads from a
random DLA-type deposit to a nearly regular pat-
tern, results of runs with various 3 are displayed. It
can be easily seen that as A is increased (this corre-
sponds to a stronger effect of the surface curva-
ture), the interface becomes more regular and a
quasiperiodic structure is built up. For times that
are not too long, this interface can be described in
terms of a characteristic wavelength which is select-
ed by the interplay of the fluctuations: the long-
wavelength destabilizing force of the diffusion field
and the local stabilizing mechanism of the curva-
ture-dependent sticking probability. A possible way
of estimating this wavelength is to calculate the in-

L
tegral I(co) =J sin(2mcux)m (x)dx, where m (x) is

the envelope of the surface [x is the distance along
the deposit and m (x) denotes the coordinate of the
most advanced point at x belonging to the surface].
The typical wavelength X(A) appears as a distinct
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FIG. 2. Interface of the deposits for various values of
the parameter A. The following values were used (in all
cases i= 11): (a) 3 =0.0, B=1.0; (b) A =3.0, B=0.5;
(c) A =6.0, B=0.5; and (d) A =12.0, B=0.5. As the
role of the surface curvature is increased [(a) corre-
sponds to zero surface tension] the randomness of the
interface becomes less significant and a nearly regular
pattern develops with a characteristic wavelength increas-
ing with A.

peak at co(A) in I(cu). [There are, of course, some
more trivial peaks in I (co) as a result of the finite-
ness of the interval on which this Fourier-type
analysis is made. ] In Fig. 3 the dependence of
X (A ) on the parameter A is shown.

With increasing number of deposited particles,
the structures shown in Figs. 2(b)-2(d) become
unstable and a configuration analogous to Fig. 2(a)
develops. In the limit of large 3, a well defined
crossover can be observed from the cellular to a
random pattern. However, it is possible to obtain
linearly stable patterns in this model by introducing
biased diffusion. By increasing the probability of
jumping downward, one can simulate the effects of
a thermal gradient imposed onto the system in
directional-solidification experiments. In this way,
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count some more factors such as anisotropy or
external field which effect pattern formation. In
this way the relevance of these details during non-
equilibrium growth processes can also be investigat-
ed. Application of the model to the off-lattice or to
the three-dimensional case is straightforward and is
expected to provide important new information.

The author is grateful to F. Family and Z. Racz
for valuable discussions. This research was sup-
ported by grants from the Research Corporation,
Emory University Research Fund, and by the Na-
tional Science Foundation through Grant No.
D MR-82-08051.

FIG. 3. Dependence of the characteristic wavelength
in the deposits on the parameter A for fixed B = 0.5.

stable cellular patterns can be generated in good
agreement with the experimental observations. '

Although most of the results presented in this pa-
per are more qualitative than quantitative, one can
draw a number of important conclusions about the
nature of the mechanism which leads to pattern for-
mation in diffusion-controlled systems. (i) Surface
tension (simulated by the curvature-dependent
sticking probability) and the anisotropy (provided
by the square lattice) produce nearly regular pat-
terns in diffusion-limited aggregation. (ii) For the
curvature-independent case, all wavelengths are
equally present. With the increasing dependence
on the interface curvature, however, the tips of the
growing dendrites become rounded. As a result
more particles are involved in the growth of one
dendrite and the fluctuations become relatively less
important. Consequently, at least at the beginning,
the growth rate of the tip' is less different and a
more regular pattern is obtained. It is expected,
however, that in the deposition model after a long
time, a crossover from a cellular to a dendritic
structure takes place, while the characteristic radius
of the tips remains constant. (iii) The fact that the
dendrite tips have approximately the same radius
(although other tip radii would also be stable) is in

accord with the theories about pattern selection.
(iv) The rule of relaxing the particle to a neighbor-
ing position with the smallest potential energy plays
an important role in getting compact clusters.
Without this rule, ramified clusters are obtained
showing that surface migration during growth
processes with surface tension is essential.

Finally, the model introduced in this paper can be
relatively easily modified in order to take into ac-
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