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Domain Growth in the Ising Model in a Random Magnetic Field
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Simulations of the two-dimensional ferromagnetic Ising model in a random magnetic field
with spin-flip dynamics are reported. After the system is deeply quenched into the unstable
region of the phase diagram, novel dynamical behavior for the average size of the growing

domains is observed.
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Random impurities are ubiquitous to condensed
matter, metallurgical, and surface science systems.
Some important aspects of these effects can be
simulated by a random magnetic field.!"*> This has
been the subject of considerable recent interest.!”’
The nature of the phase transition in simple Ising-
type systems changes dramatically as a result of the
random field. In particular, theory, experiment,
and computer simulations have attempted to deter-
mine the dimensionality at which long-range order
is broken. According to theory, fluctuations due to
the random field raise the lower critical dimension
in the Ising model from d,=1 to either d,=2* or
possibly d,=3.5 Experiments’ have been per-
formed on an easily controlled analog® of the
random-field Ising model: diluted antiferromagnet-
ics in a uniform field. Those studies correspond to
either (i) turning on the uniform field in the or-
dered state (slow field quench), or (ii) lowering the
temperature when the field is already present (slow
temperature quench). However, hysteresis effects
complicate the interpretation of experiments.
Several groups have studied random fields by
Monte Carlo computer simulation.” Recently
Stauffer et al.” have conducted extensive Monte
Carlo simulations of slow field quenches and slow
temperature quenches, after annealing at low tem-
perature in the field. Their results provide a partial
explanation for the observed hysteresis.

The behavior of a system after a rapid tempera-
ture quench is an interesting and fundamental prob-
lem in its own right.® It is useful to separate the
evolution into different time regimes, such as early
and late, for which different theories can be
developed. We focus here on the early-time
behavior. In an order-disorder transition in a two-
state degenerate system (such as a binary alloy),
domains of ordered phase form and grow as time
evolves. The average size of a domain, R, in an
early to intermediate time regime® is given by
R %« t, in which the interface curvature drives
domain growth. This has been observed in metal-
lurgical systems, chemisorbed systems, and com-
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puter simulations of lattice-gas models.!® Late-time
theories describe the approach to equilibrium. On a
two-dimensional substrate, random impurities enter
such systems through, for example, steps, terraces,
or vacancies. Experiments observe a slowdown in
evolution which is partly attributed to these ef-
fects.!! Theories of various aspects of domain
growth in the presence of a random field have been
recently proposed by two of us,'? Villain,!* and
Grinstein and Fernandez.'* These will be discussed
below.

In this Letter, we present the first Monte Carlo
computer simulation of domain growth in the
random-field Ising model. Two typical configura-
tions in the evolution are shown in Fig. 1. It is im-
possible to determine precisely the functional form
of R (h,t) at the moment. Nevertheless, we find
that the random field has crucial effects on domain
growth: The evolution is dramatically slowed down,
and the R %« t law (which describes the zero-field
behavior) breaks down. An analysis in terms of ex-
isting theory (which, however, does not constitute a
definitive test) is presented below. Our results for
R 2(t) are given in Fig. 2. A more detailed discus-
sion of our results will be given in a subsequent pa-
per.

The Hamiltonian for the two-dimensional Ising
model is

N
H= —Jzoioj—- Eh,(r,,

(i) i=1
where the interaction sum runs over nearest neigh-
bors, and the N spins can take the values o;= +1.
We have considered the case where the random
magnetic field A; is given by the Gaussian probabili-
ty distribution P, =[1/(27)Y2h lexpl —h*/ (2n?)],
so that (k) =0, and (hh;) =h?8;. Theoretical
studies of the random-field Ising model often make
use of this distribution.

After an instantaneous critical quench from tem-
perature T/J = to T/J =1 (Boltzmann’s constant
set equal to unity), the system is allowed to evolve
via the standard Metropolis spin-flip Monte Carlo
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FIG. 1. Two typical configurations are shown at (a)
t=12 MCS and (b) t=500 MCS. The system size is
N =240%, the temperature is T/J=1, and the field
strength is # = 0.311.

procedure. This corresponds to model A in field
theory, where the scalar order parameter is noncon-
served. The unit of time in the simulation is a
Monte Carlo step (MCS) which consists of N/15
random updatings of groups of fifteen widely
separated spins.!> The average size of the domains,
following the quench, is given by R 2, the square of

/0
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FIG. 2. RZ vs t. Squares, triangles, crosses, and

lozenges, correspond to 4 =0, 0.311, 0.415, and 0.518.

Every fifth data point is plotted, from ¢t =5 MCS. Error

bars are 7%; 352 quenches for # =0; 450 quenches for

each nonzero field, N =752 R g« R 2, as discussed in
text.

the inverse perimeter density. Although we have
calculated R ? for several times during the simula-
tion, it is difficult to evaluate it for all times of in-
terest. Thus, as is common in the literature,'® 17 we
present results for the following measures of evolv-
ing orientational order. Firstly we consider the
nonequilibrium fluctuations in magnetization per
spin, i.e.,

R} (D=N((1/N)3,0,1%),

as proposed by Sadiq and Binder.!'® This is plotted
in Fig. 2 for the different field strengths that we
have considered, # =0, #=0.311, 4 =0.415, and
h=0.518. Secondly we consider the average non-
equilibrium energy per spin E, in the form!®!’
Rp(1)=2/(2+E/J), for the four field strengths.
In the absence of a random field both R 3 and R 2
are proportional to R2. We have found that
R}=CR?* where C is a constant, while
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R 2(h)=C' (h)R *(h,t), where C'(h=0) =1, for
the times at which R was calculated. The factor
C’(h) arises from bulk energy due to the random
field.'®

We have chosen to simulate a 752 system over a
large number of runs (352 runs for # =0, 450 runs
for each nonzero h), rather than a larger system for
a small number of runs, for the following reasons.
The physics of the random field is such that it
causes short-range roughening effects at interfaces
in the growth process. These roughening effects
result in noisy data. Thus we have done 450 runs
for each nonzero field strength to get precise
results. Since the random-field effects are predom-
inately over short ranges, we expect N =752 to be
large enough to encompass the necessary physics of
the problem. We have checked this by conducting
test runs over both larger and smaller lattices (from
N =60? to N =240%). The main effect we find due
to finite sizes is that percolation effects (artifacts of
the periodic, boundary conditions we use) become
important for R — 0.4y/N. This is a well-known
result'®17; more subtle finite-size effects are also
possible. Thus we have considered times ¢ < 500
MCS, since we reach this value of R at ¢t ~ 400
MCS for h =0.311. This effectively limits the time
regime over which useful data can be taken.'

We now turn to the analysis of our data. It is
possible to find a good effective power-law fit
R 2 t" to our data, where, however, the effective n
decreases as the random field increases. An effec-
tive power-law fit may have some implications for
the evolution of, e.g., chemisorbed systems. Ex-
perimental studies have observed a slowdown of
growth, which is partly attributed to surface hetero-
geneities. We emphasize, though, that the experi-
mental slowdown usually involves the degeneracy
of the ground state also: Sahni et al.!! have shown
that vertices in the Q-state Potts model slow
domain growth through Q-dependent exponents in
an effective power law. It may be that a combina-
tion of both impurity and degeneracy effects is
responsible for the experimental observations.

The rather interconnected structure in Fig. 1(a) is
typical of the initial stages of an unstable state’s
evolution. Previously, two of us have presented a
theory for such domain growth in the random-field
Ising model.!? In two dimensions the growth law
was found to be given by the functional form

R2=R*(h=0,0[1+h*a—b1n1)],

where R 2= (h =0,f)ct, which is consistent with
d;=2. Of course for h?b << 1 this will be numeri-
cally similar to a power law.2% It is difficult to deter-
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mine the range of validity of this theory since the
approximations used to derive it are, to some ex-
tent, uncontrolled. However, for late times, as
domains become compact, it is clear that the theory
will break down because it is based on an assump-
tion of isotropy. The logarithmic correction form is
as good a fit to the time dependence as an effective
power law.2! However, the field dependence does
not seem to be in agreement with theory?? in that
the coefficients @ and b appear to have field depen-
dence. There is a clear need, then, for further
theoretical work.

Recently, Villain,!* and Grinstein and Fernan-
dez'* have also presented dynamical theories for the
random-field Ising model which address different
issues than that of the theory discussed above.
(For example, Villain studies the genesis of meta-
stable states in a cooling process.) They predict log-
arithmic behavior for R (¢#). Since both theories as-
sume compact domains with no curvature-driven
growth, we expect that they describe the late stages
of evolution. From Fig. 1(b), although domains
are becoming compact, it is not clear that we have
reached the time regime where these theories
would apply. These late stages of growth would be
inaccessible to our Monte Carlo simulations, except
for much larger values of # than we have con-
sidered.”” Therefore, as would be expected, we do
not observe the logarithmic behavior for R.

To conclude, we have investigated domain
growth in the random-field Ising model and found a
novel time dependence for the growth law. The
dramatic slowing down that we observe may be re-
lated to growth in chemisorbed systems in the pres-
ence of heterogeneous impurities. The previous
theory of two of us appears to provide a least a qual-
itative explanation of our data. A more quantitative
comparison with theory will be given in a subse-
quent paper.
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