Tunneling Levels and Specific Heat of One-Dimensional Chaotic Configurations

Rolf Schilling

Institute of Physics, University of Basel, CH-4056 Basel, Switzerland (Received 12 June 1984)

For a translationally invariant model of a chain of classical particles with competing interactions, the existence of tunneling levels is proved. Their density of states, which exhibits a scaling property, is derived for a special type of quenched disorder. Finally it is shown that the low-temperature specific heat behaves like $c(T) \sim T^{\tilde{d}}$ with a fractional exponent $\tilde{d} = -(\ln 2)/\ln |\eta| < 1$, where η depends on the coupling constants.

PACS numbers: 61.40.-a, 64.60.Cn, 65.40.-f

The linear temperature dependence of the specific heat c(T) of amorphous solids below 1 K found experimentally¹ and explained^{2, 3} by the existence of tunneling levels with constant density of states on the scale of $10^{-5}-10^{-4}$ eV is rather exceptional. For instance, for vitreous Se a $T^{0.5}$ law was found.⁴ In the meantime, several experiments have confirmed such fractional exponents.⁵

In this Letter, I present two main results: (i) For a chain of classical particles with competing interactions the existence of two-level systems (TLS) is proved. Their density of states and the potential barriers are derived exactly. As far as I know⁶ this was not done before. A qualitative approach was recently given by using topological arguments.⁷

(ii) For chaotic (amorphous) arrangements of the atoms, which do *not* have a fractal structure,⁸ I show that, nevertheless, the TLS form a Cantor set with fractal dimension \hat{d} .⁸ This may explain the fractional exponents of c(T) below 1 K. Similar Cantor spectra were recently found for the vibrational modes of fractals,⁹⁻¹¹ but because amorphous solids are not fractals, the results presented here seem more appealing.

Consider a chain of particles with interactions up to *r*th nearest neighbors,

$$V = \sum_{n} \sum_{l=1}^{r} V_l (u_{n+l} - u_n), \qquad (1)$$

where V_l is the interaction energy between the *l*th nearest neighbors and u_n the position of the *n*th

atom. (r = 2 is assumed in the following.) For the nearest-neighbor interaction, we use a double-well potential with minima at a_1 and a_2 ,

$$V_1(x) = \frac{1}{2}C_1[x - a_+ - a_-\sigma(x)]^2,$$

$$C_1 > 0, \quad a_+ = \frac{1}{2}(a_2 \pm a_1),$$
(2a)

where

$$\sigma(x) = \operatorname{sgn}(x - a_+), \tag{2b}$$

and a harmonic interaction for V_2 ,

$$V_2(x) = \frac{1}{2}C_2(x-b)^2, \quad C_2 \ge 0.$$
 (2c)

Similar exactly solvable models were used to study spatially modulated phases.^{12, 13} The presence of two degenerate energy minima of V_1 may also model two types of "molecules" with equilibrium size a_1 and a_2 . The results presented in this Letter do not change much for more general, piecewise-parabolic potentials, e.g., those with only one minimum. This and details of the calculations presented here, as well as the investigation of the pair distribution function, will be discussed elsewhere.¹⁴

Under the assumption that the stress in the chain [which is an invariant because of the translational invariance of (1)] is zero and with the atomic distances

$$v_n = u_{n+1} - u_n,$$

the equation $(\partial V/\partial u_n) = 0$ for the equilibrium configurations reduces to

$$C_1(v_n - a_{-}\sigma_n) + C_2(2v_n + v_{n-1} + v_{n+1}) - a_{+}(C_1 + 2bC_2) = 0,$$
(3a)

where

$$\sigma_n = \sigma(v_n), \tag{3b}$$

and $\sigma_n = \pm 1$ because of (2b).

The bounded solutions of (3a) can be obtained, following Refs. 12 or 13, as

$$v_n = A + \frac{1}{2}B(1-\eta)(1+\eta)^{-1} \sum_{i=-\infty}^{\infty} \eta^{|i|} \sigma_{n-i},$$
(4)

© 1984 The American Physical Society

2258

where

$$A = (1 - \eta)^{-2} [(1 + \eta)^2 a_{+} - 2\eta b], \quad B = 2a_{-}(1 - \eta)^{-2}(1 + \eta)^2,$$

$$\eta = -\gamma [1 - (1 - \gamma^{-2})^{1/2}], \quad \gamma = 1 + C_1/2C_2.$$

A configuration $v = \{v_n\}$ following from (4) by specifying a sequence $\sigma = \{\sigma_n\}$, $\sigma_n = \pm 1$, is an equilibrium configuration if and only if (i) v_n are positive and bounded and (ii) the self-consistency condition (3b) is fulfilled. It can be shown¹⁴ that for $|\eta| < \frac{1}{3}$ there exists a finite range for (a_1, a_2, b) such that (i) and (ii) are satisfied for *any* sequence σ . In addition it is easy to prove (because of the piecewise-parabolic potential) that the metastability of *all* equilibrium configurations is guaranteed for $C_2 > -\frac{1}{4}C_1$, i.e., $|\eta| < 1$.

Equation (4) is an explicit example for an embedding of the Bernoulli shift justifying recent investigations¹⁵ of chaotic configurations. Substitution of v_n from Eq. (4) into (2) yields the energy of the equilibrium configurations $v = \{v_n\}$,

$$E(v(\sigma)) = e_0 \sum_n 1 + h \sum_n \sigma_n + \sum_{n \neq m} J(n-m) \sigma_n \sigma_m,$$
(5)

where

$$e_0 = \alpha [(2a_+ - b)^2 + 2a_-^2 (1 - \eta)], \quad h = \alpha 4a_- (2a_+ - b),$$

$$J(m) = J_0 \eta^{|m|}, \quad J_0 = \alpha a_-^2 (1 - \eta^2)/\eta, \quad \alpha = C_2 (1 + \eta)^2 / 2(1 - \eta)^2.$$

For a given sequence $\sigma = \{\sigma_n\}$, let i-1 and i be bonds with $\sigma_{i-1} = -1$ (+1) and $\sigma_i = 1$ (-1). A new metastable configuration $v(\sigma')$ with $\sigma'_{i-1} = \sigma_i$, $\sigma'_i = \sigma_{i-1}$, and $\sigma'_n = \sigma_n$ otherwise is obtained from $v(\sigma)$ just be moving the *i*th atom over a potential barrier and then relaxing the chain. From (5) we obtain the energy difference $E(v(\sigma')) - E(v(\sigma)) = \epsilon_i(\sigma)$,

$$\boldsymbol{\epsilon}_{i}(\boldsymbol{\sigma}) = 4J_{0}(1-\eta)\sum_{\nu=1}^{\infty}\eta^{\nu}(\sigma_{i-1-\nu}-\sigma_{i+\nu}).$$
(6)

By addition of an external force term $(-Fv_{i-1}-F'v_i)$ to (1), the equilibrium configurations can be calculated as a function of F and F' and the barriers Δ_i can be derived as

$$\Delta_i(v(\sigma)) = -C_2(2\eta)^{-1}[(a_+ - v_{i-1})^2 - 2\eta(a_+ - v_{i-1})(a_+ - v_i) + (a_+ - v_i)^2]$$
(7)

which is positive because $|\eta| < \frac{1}{3}$ and $C_2/\eta < 0$, independent of the sign of C_2 . The energy differences [Eq. (6)] between two local minima are classical energies. At low temperatures the following quantum corrections may become important: (i) the zero point energy $\hbar \omega_i$ and (ii) a change of energy as a result of resonant tunneling. Using V_1 and V_2 [Eqs. (2a) and (2b)] we find that the zero-point energy is equal to $\hbar \omega_0 = \hbar [-2C_2/(\eta m)]^{1/2}$ (*m* is the particle mass and remember $C_2/\eta < 0$) for all local minima due to the special form of V_1 . Thus the zero-point energies just cancel for the energy differences.

Using Eqs. (6) and (7) one can show that the correlations between $\epsilon_i(\sigma)$ and $\Delta_i(\sigma)$ become so weak for ϵ_i of the order 10^{-4} eV or smaller that they may be neglected. In addition, it can be shown that $\Delta_{\min} \leq \Delta_i \leq \Delta_{\max}$ for all *i*, with $\Delta_{\min} = (-C_2/\eta)a_-^2(1+\eta)^3$ and $\Delta_{\max} \leq 2\Delta_{\min}$ for all $|\eta| < \frac{1}{3}$.

Let us assume in the following that $\Delta_{\max} = 0.1$ eV; thus $\Delta_{\min} \ge 0.05$ eV. Following Ref. 2 we determine λ_{\min} and λ_{\max} ($e^{-\lambda}$ is the overlap of the

wave functions) for an oxygen atom and a separation of the potential wells equal to $a_{-} = 1$ Å. The parameter $(-C_2)/\eta$ can be obtained from Δ_{\min} which then leads, for $\eta = \frac{1}{4}$, to $\hbar \omega_0 \approx 2 \times 10^{-3}$ eV and $\lambda_{\min} = \ln(2\hbar \omega_0/\epsilon_i) \leq 6$ ($\epsilon_i \geq 10^{-5}$ eV). For a specific-heat measurement with time scale t = 10sec it follows $\lambda_{\max} = \frac{1}{2} \ln \Gamma_0 t < 16$ where we have assumed $\Gamma_0 = \omega_0$ ($\Gamma = \Gamma_0 e^{-2\lambda}$ is the tunneling rate). From $\Delta_{\min} \leq \Delta_i \leq \Delta_{\max}$ we obtain that $9 < \lambda_i < 13$ for all *i*. Thus for all the potential barriers $\lambda_{\min} < \lambda_i < \lambda_{\max}$. $\lambda_i > \lambda_{\min}$ means that resonant tunneling can be neglected, i.e., the energies ϵ_i are, within this approximation, the tunneling levels, and $\lambda < \lambda_{\max}$ justifies taking all tunneling levels between 10^{-5} and 10^{-4} eV into account for the calculation of the specific heat.

Now we will specify σ which leads to chaotic configurations. Special chaotic (amorphous) arrangements of the atoms are obtained for sequences which are *normal*, i.e., sequences for which all the 2^k possible subsequences of length k occur with equal probability 2^{-k} for all k (analogous to normal numbers¹⁶). Non-normal sequences of the form $\sigma_n = 1$ for $n \neq km$ and σ_n random $(= \pm 1)$ for n = km, for a fixed integer k and all integers m, lead to chaotic but *microcrystalline structures*. The importance of normal numbers for amorphous configurations was also pointed out in Ref. 15. In the following the sequence σ , which characterizes the type of *quenched bond disorder*, is assumed to be normal.

The tunneling levels (6) form a Cantor spectrum with fractal dimension:

$$\hat{d} = -(\ln 3)/\ln|\eta|. \tag{8}$$

This property originates from the Cantor-set structure built by the nearest-neighbor distances (4) similar to results for a Frenkel-Kontorova-type model.¹⁷

The density of states $n(\epsilon)$ can be obtained as follows: For an energy resolution equal to $\epsilon_0 |\eta|^{\nu}$ $[\epsilon_0 = 8|J_0\eta|(1-\eta)]$ we find for the ν th order density of states $n_{\nu}(\epsilon)$

$$n_{\nu}(\epsilon) = n_0 \begin{cases} 2^{\mu-\nu} (2|\eta|)^{-\nu}, & \epsilon \text{ in } I^{\mu}_{\mu_1 \dots \mu_{\nu}}, \\ 0, & \text{otherwise,} \end{cases}$$
(9)

where

$$I^{\mu}_{\mu_{1}...\mu_{\nu}} = [\epsilon_{0}(\sum_{i=1}^{\nu}\mu_{i}|\eta|^{i-1} - \delta_{\nu}),$$

$$\epsilon_{0}(\sum_{i=1}^{\nu}\mu_{i}|\eta|^{i-1} + \delta_{\nu})],$$

$$\mu_{i} = 0, \pm 1, \quad \delta_{\nu} = |\eta|^{\nu}/(1 - |\eta|),$$

and μ is the number of μ_i which are zero. $n_0 = (1 - |\eta|)/4\epsilon_0$. Here we have taken into account that for N particles there are 2N/4 = N/2 tunneling levels (σ normal). $n_{\nu}(\epsilon)$ is presented in Fig. 1 for $\nu = 1, 2, \text{ and } 3$.

From Eq. (9) we find the scaling property

$$n_{\nu+1}(|\eta|\epsilon) = (2|\eta|)^{-1}n_{\nu}(\epsilon), \qquad (10)$$

for $|\epsilon| \leq \epsilon_0 (1 - |\eta|)^{-1}$ and $\nu \geq 1$, which also becomes obvious from Fig. 1. The spectral dimension \tilde{d} defined by¹⁸

$$n(\epsilon) \sim \epsilon^{\tilde{d}-1} \quad (\epsilon \to 0) \tag{11}$$

follows from (10) for $\nu \rightarrow \infty$,

$$\tilde{d} = -(\ln 2)/\ln|\eta| = \hat{d}(\ln 2)/\ln 3.$$
(12)

That such a relation must hold follows from the definition of the fractal dimension \hat{d} ,⁸ which also implies $\hat{d} < 1$ for a Cantor set on the real line. Using (11) and (12) we get for the temperature dependence of the specific heat

$$C(T) \sim T^{\overline{d}}, \quad 0.1 \ K < T < 1 \ K,$$

FIG. 1. The density of states $n_{\nu}(\epsilon)$ for $\nu = 1, 2, \text{ and } 3$ and $|\eta| = \frac{1}{4}$.

with \tilde{d} given by (12). Because $|\eta| < \frac{1}{3}$ it follows that $0 < \tilde{d} < 0.63$. Some experimental data, e.g., for Se,⁴ are in that range. Fractional exponents larger⁵ than 1 may also be possible for other models despite the fact that \hat{d} is always less than 1. The gaps which exist in the spectrum of the tunneling levels (compare Fig. 1) may provide a microscopic justification of the phenomenological theory by Lasjaunias, Maynard, and Vandorpe.¹⁹ With the assumption of a gap in the density of states, they obtained for the specific heat $c(T) \sim T^{1+\nu}$ with $0 < \nu < 1$.

In conclusion, the simple model studied here provides a microscopic derivation of tunneling levels and potential barriers. Both can be obtained for arbitrary quenched disorder because Eqs. (6) and (7) are true for any sequence σ . For a special class of disorder, which was given by normal sequences, the density of states is nonconstant and exhibits a scaling property as a result of the Cantor spectrum; this leads to a low-temperature specific heat $c(T) \sim T^{\tilde{d}}$, where $\tilde{d} < 1$ depends only on the ratio C_1/C_2 of the elastic constants. These results do not depend on the sign of C_2 and are stable against small anharmonic perturbations of $V_1(x)$, e.g., such as $C_1'x^4$ as long as C'_1 is small enough.¹⁴

The model I have studied may apply to quasione-dimensional systems or layered compounds. But it also seems possible that similar results may be true for two- and three-dimensional systems, because, for amorphous solids, the Euclidean dimension d does not play as important a role as in the Debye theory; instead \tilde{d} may be the relevant quantity.

Helpful discussions with P. Reichert, P. Talkner, S. Thiesen, and H. Thomas are gratefully acknowledged. I also thank P. Reichert and P. Talkner for a critical reading of the manuscript. This work was partially supported by the Swiss National Science Foundation.

¹R. C. Zeller and R. O. Pohl, Phys. Rev. B 4, 2029 (1971).

²P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25, 1 (1972).

³W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).

⁴J. C. Lasjaunias, R. Maynard, and D. Thoulouze, Solid State Commun. **10**, 215 (1972).

⁵R. O. Pohl, in *Amorphous Solids: Low Temperature Properties*, edited by W. A. Phillips (Springer-Verlag, Berlin, 1981). ⁶I have just seen the paper by T. Geszti [Phys. Rev. B 30, 1811 (1984)]. He studies two-level systems in a Frenkel-Kontorova-type model. But for the density of states he finds $n(\epsilon) \sim \epsilon^{-1}$, leading to a constant specific heat.

⁷N. Rivier and D. M. Duffy, J. Phys. (Paris) **43**, 293 (1982).

⁸B. B. Mandelbrot, *The Fractal Geometry of Nature* (Freeman, San Francisco, 1982).

⁹S. Alexander and R. Orbach, J. Phys. (Paris), Lett. **43**, L625 (1982).

¹⁰S. Alexander, C. Laermans, R. Orbach, and H. M. Rosenberg, Phys. Rev. B **28**, 4615 (1983).

¹¹R. Rammal, J. Phys. (Paris) **45**, 191 (1984).

¹²J. Villain and M. B. Gordon, J. Phys. C **13**, 3117 (1980).

¹³F. Axel and S. Aubry, J. Phys. C 14, 5433 (1981).

¹⁴P. Reichert and R. Schilling, to be published.

¹⁵P. Reichert and R. Schilling, Phys. Rev. B **30**, 917 (1984).

¹⁶I. Niven, Irrational Numbers, The Carus Mathematical Monographs 11 (Wiley, New York, 1956).

¹⁷S. Aubry, in *Physics of Defects*, edited by R. Balian, M. Kleman, and J.-P. Poirier (North-Holland, Amsterdam, 1981).

¹⁸R. Rammal and G. Toulouse, J. Phys. (Paris), Lett. **44**, L13 (1983).

¹⁹J. C. Lasjaunias, R. Maynard, and M. Vandorpe, J. Phys. (Paris), Colloq. **39**, C6-973 (1978).