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For a translationally invariant model of a chain of classical particles with competing interac-

tions, the existence of tunneling levels is proved. Their density of states, which exhibits a

scaling property, is derived for a special type of quenched disorder. Finally it is shown that

the low-temperature specific heat behaves like c(T) —T with a fractional exponent
d = —(tn2)/inert i ( 1, where q depends on the coupling constants.

PACS numbers: 61.40.—a, 64.60.Cn, 65.40.—f

The linear temperature dependence of the specif-
ic heat c (T) of amorphous solids below 1 K found
experimentally' and explained by the existence of
tunneling levels with constant density of states on
the scale of 10 -10 eV is rather exceptional.
For instance, for vitreous Se a T law was found.
In the meantime, several experiments have con-
firmed such fractional exponents.

In this Letter, I present two main results: (i) For
a chain of classical particles with competing interac-
tions the existence of two-level systems (TLS) is

proved. Their density of states and the potential
barriers are derived exactly. As far as I know this
was not done before. A qualitative approach was

recently given by using topological arguments. 7

(ii) For chaotic (amorphous) arrangements of the
atoms, which do not have a fractal structure, 8 I
show that, nevertheless, the TLS form a Cantor set
with fractal dimension d. This may explain the
fractional exponents of c(T) below 1 K. Similar
Cantor spectra were recently found for the vibra-
tional modes of fractals, " but because amor-
phous solids are not fractals, the results presented
here seem more appealing.

Consider a chain of particles with interactions up
to r th nearest neighbors,

V= X X VI(u„+I —u„),
n l=l

where Vl is the interaction energy between the lth
nearest neighbors and u„ the position of the n th

atom (r. = 2 is assumed in the following. ) For the
nearest-neighbor interaction, we use a double-well
potential with minima at a i and a2,

V, (x) = —,
' Ctlx —a+ —a a-(x) 1',

C, ) 0, a+ = —,
' (a2+ at),

(2a)

where

o-(x) = sgn(x —a+), (2b)

and a harmonic interaction for V2,

V2(x) = —, C2(x —b), C2 ~ 0. (2c)

Similar exactly solvable models were used to study

spatially modulated phases. ' ' The presence of
two degenerate energy minima of Vi may also

model two types of "molecules" with equilibrium

size a& and a2. The results presented in this Letter
do not change much for more general, piecewise-

parabolic potentials, e.g. , those with only one
minimum. This and details of the calculations

presented here, as well as the investigation of the

pair distribution function, will be discussed else-
where. '4

Under the assumption that the stress in the chain
[which is an invariant because of the translational

invariance of (1)1 is zero and with the atomic dis-

tances

+n n+1 n~

the equation (tl V/flu„) = 0 for the equilibrium con-
figurations reduces to

Ct (u„—a tr„) + C2(2u„+ u„ t + u„+ t) —a+ (Ct + 2bC2) = 0,

where

rr„= a-(u„),

and o„= + 1 because of (2b).
The bounded solutions of (3a) can be obtained, following Refs. 12 or 13, as

(3a)

(3b)

u„= W + —,
' a (1 —~) (1+~)

—' $ (4)
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where

A = (1—q) 2[(l+q)2a+ —27ib], 8 =2a (1 —q) 2(1+7i)2,

q= —y[l —(I —y )' ], y= I+C&/2C2.

A configuration v = {v„}following from (4) by specifying a sequence a. = {a-„},o-„= + 1, is an equilibrium
configuration if and only if (i) v„are positive and bounded and (ii) the self-consistency condition (3b) is ful-
filled. It can be shown' that for ~q~ & —,

' there exists a finite range for (at, a2, b) such that (i) and (ii) are
satisfied for any sequence o.. In addition it is easy to prove (because of the piecewise-parabolic potential)
that the metastability of all equilibrium configurations is guaranteed for C2 ) ——,Ct, i.e. , {q{ & l.

Equation (4) is an explicit example for an embedding of the Bernoulli shift justifying recent investiga-
tions of chaotic configurations. Substitution of v„ from Eq. (4) into (2) yields the energy of the equilibrium
configurations v = {v„},

E(v(o.)) =epxl+hgo. „+ X J(n —m)a. „a.
n n~m

where

ep=n[(2a+ —b) +2a (1—q)], h =n4a (2a+ —b),

J(m) —J ~I~ I Jp= na 2 (I —'ri2)/7i, n = C2(l +7i) /2(1 —vl)2.

For a given sequence o-= {o.„},let i —1 and i be bonds with o-; t = —1 (+1) and o-; = 1 ( —1). A new
metastable configuration v(o.') with a. t = a-;, a- = o.; t, and a-„' = a-„otherwise is obtained from v(o. ) just
be moving the i th atom over a potential barrier and then relaxing the chain. From (5) we obtain the energy
difference E(v(o.')) —E(v(o.)) = e;(o.),

e;(n) =4Jp(1 —7l) X q" (a, , „—o-;+„).
v=1

(6)

By addition of an external force term ( —Fv; t
—F v;) to (1), the equilibrium configurations can be calcu-

lated as a function of F and F' and the barriers 4; can be derived as

b,; (v(a )) = —C2(2q) [(a+ —v; t) —2q(a+ —v, ~)(a+ —v;) + (a+ —v;) ]

which is positive because ~q ~
& —, and C2/q & 0, in-

dependent of the sign of C2. The energy differ-
ences [Eq. (6)l between two local minima are clas-
sical energies. At low temperatures the following
quantum corrections may become important: (i) the
zero point energy kru; and (ii) a change of energy as
a result of resonant tunneling. Using V~ and V2

[Eqs. (2a) and (2b)] we find that the zero-point en-

ergy is equal to trop ——it[ —2C2/(qm)]'i2 (m is the
particle mass and remember C2/q & 0) for all local
minima due to the special form of V~. Thus the
zero-point energies just cancel for the energy differ-
ences.

Using Eqs. (6) and (7) one can show that the
correlations between e;(a-) and 5;(o-) become so
weak for e; of the order 10 eV or smaller that
they may be neglected. In addition, it can be shown
that 6;„»5;»5,„ for all i, with 5;„=( —C2/
q)a 2 (1+q) and b,„»2A;„ for all ~q~ & —,.

Let us assume in the following that 4,„=0.1
eV; thus 6;„~0.05 eV. Following Ref. 2 we
determine h.~;„and A. ,„(e " is the overlap of the

wave functions) for an oxygen atom and a separa-
tion of the potential wells equal to a =1 A, . The
parameter ( —C2)/q can be obtained from 5;„
which then leads, for q= 4, to tcop=2&10 eV
and A. ;„=In(2fcvp/e;)»6 (e; ~10 eV). For a
specific-heat measurement with time scale t = 10
sec it follows P,„=—,

'
lnl pt & 16 where we have

assumed I'p= cup (I' = I'pe " is the tunneling rate).
From 3 min ~ ~i —~max we obtain that 9 & X; & 13
for all i. Thus for all the potential barriers

A, ; & I, ;„means that resonant
tunneling can be neglected, i.e., the energies e; are,
within this approximation, the tunneling levels, and

justifies taking all tunneling levels
between 10 and 10 eV into account for the cal-
culation of the specific heat.

Now we will specify o- which leads to chaotic con-
figurations. Special chaotic (amorphous) arrange-
ments of the atoms are obtained for sequences
which are normal, i.e., sequences for which all the
2" possible subsequences of length k occur with
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equal probability 2 "for all k (analogous to normal
numbers'6). Non-normal sequences of the form
v„= 1 for n A km and a„random (= +1) for
n = km, for a fixed integer k and all integers m, lead
to chaotic but microcrystalline structures. The impor-
tance of normal numbers for amorphous configura-
tions was also pointed out in Ref. 15. In the follow-
ing the sequence 0-, which characterizes the type of
quenched bond disorder, is assumed to be normal.

The tunneling levels (6) form a Cantor spectrum
with fractal dimension:

d = —(ln3)/lnl7l l.

This property originates from the Cantor-set struc-
ture built by the nearest-neighbor distances (4)
similar to results for a Frenkel-Kontorova-type
model. '

The density of states n (e) can be obtained as fol-
lows: For an energy resolution equal to @pl'gl"

[ep = 8 l Jp7i l (1—q) ] we find for the vth order den-
sity of states n„(e)

nv(c)fn,

8"

4--

8"

v=2

v=3

where

»-"(2l~l)-", ~ in I„; „,
"p,0, otherwise,

ii„+i(lq l~) = (217' l) 'ri„(~), (10)

for lel ~ ep(1 —lql) ' and v~ 1, which also be-
comes obvious from Fig. 1. The spectral dimension
d defined by'8

n (e) —e» ' (e 0)

follows from (10) for v

d = —(1n2)/1nl7il = d(ln2)/ln3. (12)

That such a relation must hold follows from the de-
finition of the fractal dimension d, which also im-
plies d ( 1 for a Cantor set on the real line. Using
(11) and (12) we get for the temperature depen-
dence of the specific heat

C ( T) —Td, 0.1 E & T & 1 E,

1~ „=[.p(g,' », l~l '-5„),
~p(x;"=is;lql' '+5, )i,

„,=0, +1, g„= I&l"/(1- l~l),

and p, is the number of p, ; which are zero. n p
= (1

—l7il)/4ep. Here we have taken into account that
for /i/ particles there are 2X/4= %/2 tunneling lev-
els (o- normal). n„(e) is presented in Fig. 1 for
v=1, 2, and 3.

From Eq. (9) we find the scaling property

n[l, nr
C/c,

FIG. 1. The density of states n, (e) for v = 1, 2, and 3
and lv)l = —,'.

with d given by (12). Because lql & —, it follows
that 0(d (0.63. Some experimental data, e.g. ,
for Se, are in that range. Fractional exponents
larger5 than 1 may also be possible for other models
despite the fact that d is always less than 1. The
gaps which exist in the spectrum of the tunneling
levels (compare Fig. 1) may provide a microscopic
justification of the phenomenological theory by
Lasjaunias, Maynard, and Vandorpe. ' With the as-
sumption of a gap in the density of states, they ob-
tained for the specific heat c(T) —T'+" with
0& v&1.

In conclusion, the simple model studied here pro-
vides a microscopic derivation of tunneling levels
and potential barriers. Both can be obtained for ar-
bitrary quenched disorder because Eqs. (6) and (7)
are true for any sequence a-. For a special class of
disorder, which was given by normal sequences, the
density of states is nonconstant and exhibits a scal-
ing property as a result of the Cantor spectrum; this
leads to a low-temperature specific heat c (T) —Td,
where d & 1 depends only on the ratio Ci/C2 of
the elastic constants. These results do not depend
on the sign of C2 and are stable against small anhar-
monic perturbations of Vt(x), e.g. , such as Cix as
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long as C~ is small enough. '

The model I have studied may apply to quasi-
one-dimensional systems or layered compounds.
But it also seems possible that similar results may
be true for two- and three-dimensional systems,
because, for amorphous solids, the Euclidean
dimension d does not play as important a role as in
the Debye theory; instead d may be the relevant
quantity.
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