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We have developed a distorted-wave strong-potential Born approximation for charge

transfer at large scattering angles in asymmetric ion-atom collisions, and applied it to the cal-

culation of electron capture in resonant nuclear collisions. A strong variation of the capture

probability across the resonance is predicted.
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During the last few years measurements of atom-
ic ionization probabilities in coincidence with
resonant nuclear scattering in asymmetric ion-atom
collisions has proved the feasibility of extracting
data on nuclear scattering amplitudes from atomic
physics experiments, ' and the theoretical under-
standing of such processes appears to be satisfacto-
ry. In this Letter we propose an alternative
method for studying atomic-nuclear interference
phenomena in similar collision systems, namely the
measurement of the variation of the electron cap-
ture probability across a nuclear resonance. As in
the case of ionization, the sensitivity of the process
to a nuclear delay time is due to the development of
an extra energy phase difference between the cap-
ture amplitudes for the incoming and the outgoing
parts of the collision, although the details of the
capture mechanism are some~hat more involved.
Both mechanisms are basically sensitive to nuclear
widths I" which are comparable to the atomic energy
transfer 3 E (atomic units t = e = m, = 1 are used
throughout),

DE=I . (l)
However, the energy transfer for a given collision

velocity U is different for ionization (I) and capture

(c)
aE'= IE'I+E aE = IE I

—IEfl+u'/2, (2)

where for definiteness we consider capture from the
inner shell of the target, which is taken as the heavy

collision partner. E;T and Ef are the energies of the

initial target and the final projectile bound states,
respectively. Ef is the energy of the emitted elec-
tron. If this electron is not detected, the resonance
structure of the ionization probability will be
smeared out by the energy distribution of the 6
electrons, while the energy transfer for the capture
process is well defined. Furthermore, measure-
ments of total ionization probabilities are restricted
to I = IE; I according to Eq. (1), while for capture
the additional v2/2 allows broader resonances,
which are more likely to occur, to be investigated.

The theory for electron capture which corre-
sponds to the first-order perturbation theory for
ionization in asymmetric collisions is the strong-
potential Born approximation (SPB), or approxi-
mations based upon it. This theory has been very
successful in explaining experimental results on
inner-shell capture by light particles. Recently
we have shown, ' using a semiclassical version of
the SPB approach, that also for capture at large
scattering angles the agreement between theory and
experiment" is good. But although nuclear
resonant scattering has a natural interpretation as a
time-delay effect, an appropriate theoretical descrip-
tion should be based on a fully quantal description
of the internuclear motion. ' We have therefore
generalized the quantal formulation of the SPB to
include distorted waves for the nuclear motion.

As in the plane-wave case, the SPB capture am-

plitude can be written in terms of an excitation am-

plitude of the electron in the target system, times
an overlap with a moving projectile state:

W~, =)I dK dq(xg-'yflxg-&q) (xg-&y„'(~) I y~+ y„lxt+&y,.r) (3)

Here, Vp is the projectile potential, Q; is the electronic initial state, Q-(to) is an off-shell target continuum

state of energy co = K~ /2p, + ET E /2p„, K;, K, and Kf ar—e initial, intermediate, and final relative nuclear
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momenta, X L„-+ ingoing and outgoing nuclear
scattering states (eigenstates of the internuclear
Hamiltonian H~), I q) is an electronic plane wave,
and p, '=Mp +Mr with Mp (MT) the projec-
tile (target) mass. Equation (3) is different from
the corresponding plane-wave result in three
respects: Firstly, the final electronic projectile state

P& must incorporate in a nonperturbative way the
strong influence of the nuclear collision on an elec-
tron bound to the weak potential (projectile recoil).
In practice, this can be done by shifting the argu-
ment of the projectile momentum-space wave func-
tion by the outgoing velocity (Kf/p, ) even during
the incoming part of the collision. ' ' Secondly,
the recoil of the target atom induces the effective
potential V&

——MT 'r V-„V&, where V~ is the in-

ternuclear potential. ' Thirdly, the exact inclusion
of V& requires the intermediate states X~ to be
eigenstates of H~, reflecting the possibility of nu-
clear scattering behveen excitation and capture. A
more detailed discussion of the derivation of Eq.
(3) and its evaluation will be presented elsewhere. '4

An important simplification in the present situa-
tion is that the length scales of the nuclear and the
atomic effects are very different. Thus we can as-
sume that there exists a cutoff radius R&, outside
of which the nuclear wave functions have reached
their asymptotic values, and where the main contri-
bution to the atomic matrix elements arises. In
this region we have

x)+ &(R)

—Xg(R)=e'~' +f(K g- -)e'+ /g,
R) R~ (4)

[and X«&(R)+X~+)'(R)]. Here f is the nuclear

scattering amplitude (we use the notation a for the
direction of a). Strictly speaking, an additional
phase —lnKR should appear in the outgoing wave
in Eq. (4), but the effect of such a term is negligi-
ble in situations of practical interest.

For resonant nuclear scattering, the projectile will

have a large amplitude for being found inside the
target nucleus. When R ( RN, Eq. (4) cannot be
used. However, since Vp( r —R) is a slowly vary-
ing function of R for R & Rz for all values of r
that contribute significantly to the electronic matrix
elements, one can exploit the orthogonality of X&,
and Xg+ for K A K' to find

(x&-'I Vp( r —R) Ix)+ &)

= (X"'g
I Vp(r —R) —Vp( r )IX'P). (5)

The last term of the right-hand side of Eq. (5) is

the so-called sticking term, 4 5 which describes the
electronic excitation during nuclear contact. The
recoil matrix element can be evaluated in a similar
manner, by first using the identities '7 ~ V&
= [V a,H~] = p, [[R,H~],H~]. The sticking term
is negligible in this case.

With Eqs. (4) and (5), Wf; can be evaluated. For
large-angle scattering it is sufficient to retain the
terms linear in f, corresponding to a single nuclear
scattering. Terms involving exp[i(K+ K')R ],
which describe the projectile backscattering on the
electron, can also be dropped. The capture ampli-
tude can then be written in the form

+fi +fi+ +f'+ +fi+ Rfi. (6)

Here the term 8~; is the contribution arising from
Vp ( r —R) in Eq. (3), while IVf; and Wf come
from the recoil term (involving Vz) and the stick-
ing term, respectively, as in the case of ionization.
Rf; is a sticking correction to the transfer ampli-
tude, which can generally be neglected. Explicit ex-
pressions for 8~; when Vp is a Coulomb potential
will be given elsewhere. ' These expressions are
still not very well suited for numerical evaluation,
however. By virtue of the fact that the electronic
momenta (e.g, q) will be small compared to K, K;,
and Kf, the latter can be replaced by K; unless
differences K —K' are involved. In the limit where
f is constant on the energy scale of ET, one then
finds 8fi Rfi 0 and

IVf, = f(K(, 8x - ) af—/4m p,f
where af; is the semiclassical capture amplitude in
the zero-impact-parameter approximation. ' At
asymptotically large velocities its structure can even
be understood classically. '

Even if f is not constant, Wj; can be evaluated by
use of the same approximations as in the semiclas-
sical case, namely replacing the off-shell wave func-
tion PT(co) by a renormalized Coulomb wave7 9

and using Briggs peaking approximation, which ex-
ploits the fact that Pf is strongly peaked in momen-
tum space, so that r[= Kf/p, . In this approximation
the expression for 8&; can be written as

IVf~/ a;;f(Kf, 8) + a,ff(Kf, 0) + afff(K; ~ 0)

(7)

Again, in close analogy to the semiclassical results,
the term involving a» can be identified as the partial
amplitude for both excitation of the target and cap-
ture before the nuclear scattering, while the terms
involving a,f and aff describe the contributions
where the excitation takes place before, but capture
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time-delay effect at the p3~2 and d5~2 resonances at
Ez=1.7 MeV with I =60 keV for 0=15'. How-
ever, no effect was seen at this small scattering an-
gle. If we disregard the angular momentum of the
resonance, which is not crucial for the qualitative
features of the effect, the present theory gives the
same results as in the absence of a resonance, since
the nuclear scattering amplitude is completely dom-
inated by Coulomb scattering in this case, and is in
good agreement with experiment (within 10%).
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