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Some Decay Modes of 1 + Hybrid Mesons
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Using the QCD sum-rule approach, we study the two-body decays into ordinary mesons of
J = 1 + quark-antiquark-gluon hybrid mesons containing u and d quarks. It is found that
the I =- 0 state is stable for these decays, while the I = 1 states decay predominantly into mp
with a characteristic width of 10 to 100 MeV.

PACS numbers: 11.50.Li, 13.25.+m, 14.40.—n

The use of the QCD sum-rule approach to the
hadronic spectrum' has given remarkably successful
predictions for masses, couplings, form factors, and
partial decay widths of "usual" hadronic states.

It is worthwhile, therefore, to apply the same
techniques to predict the properties of "unusual"
resonances, such as glueballs or hybrid states.

Recently, we did such a study for quark-
antiquark-gluon (qqg) hybrid mesons containing u

and dquarks, with J =1 +, 0 +, 1+,0 and
I =0, 1.

In particular, the mass of the 1 + states was
predicted at 1.3 GeV, in reasonable agreement with
the lowest bag-model results4 5 but in slight
disagreement with another QCD sum-rule calcula-
tion. 6

The absence of mixing of these 1 + exotic
mesons with ordinary qq mesons or gg glueballs,
and the expected small mixing effects with other
"unusual" mesons such as ggg glueballs or qqqq
mesons, makes the study of their properties quite
interesting since such a theoretical situation could
simplify their experimental identification.

In this Letter, we present our results for two-

body decay widths of the 1 + mesons into ordinary
mesons, using the QCD sum-rule approach. Such
estimates have also recently been considered in oth-
er models for QCD. 7

With a mass of 1.3 GeV, the 1 +, I =0 hybrid
meson h (I= 0) is kinematically stable for two-body
decays into ordinary qq mesons, while the h (I= 1)
states could decay into vrq, vrq', and 7rp. However,
the QCD sum-rule prediction has to be understood
with a precision of 10%, and with a mass of 1.43
GeV new decay modes become accessible, such as
h (I = 0) 2 t(1270) or h (I = 1) tr8 (1235).
But, as a result of phase-space suppression, these
modes have then presumably small branching ra-
tios, and we do not consider them here.

J„'"'(x)= jt(x)y G „(x)y2(x),

J "' t''t (x) = Qt(x)iys&2(x),

J„"1(x)=Pt(x)y„$2(x),

(la)

(lb)

(1c)

where Pt, P2 are quark fields of definite flavor,
G„„=gG'„, T', and 6'„„is the gluon field strength.

Z

FIG. 1. The three-point functions Eq. (2).

Other decay modes may also be allowed, such as
h 3tr or h 4m, or even h rr(qqg0 +) if
these hybrid mesons are light enough, but again
we expect them to have small branching ratios since
these are three- or four-body decays or have phase-
space suppression factors (and we do not have yet a

QCD sum-rule prediction for the 0 + hybrid
state).

Therefore, we consider in the following only the
two-body decays into ordinary mesons, i.e.,
h m. q, mq', mp, these being presumably the
dominant decay modes of the J =1 +, I=1
states.

To make any predictions for the corresponding
widths using the QCD sum-rule approach, one has
to know the operator product expansion (OPE) of
three-point functions of operators coupling to h, 7r,
and q (or q', p) states. Such operators are obtained
as linear combinations of
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It is therefore useful to first compute the OPE for the following three-point functions (see Fig. I):
dxdye'"e'~0T &xl& 2x 2yI2 3y 30' G 0

&
0 0, (2)

where (I'i, I 2) = (i ys, i ys), (i ys, y, ), or (y„,i ys).
We used the background-field method' to compute these OPE's but, because of the double Fourier

transform, one cannot work in configuration space and has to use the quark and gluon propagators (in the
background fields) in momentum space. '

On the other hand, since we consider decays into mesons containing only the light u and d quarks and can-
not hope for precise predictions, we neglect the quark masses in our calculations.

And finally, in order to simplify the computation of some of the Wilson coefficients, we consider the
three-point functions (2) at the symmetrical point p =q = (p+q) = —0 .

Our results for the OPE's are then as follows:
For (Fl F2) (i Ys I Ys)

with

I = —2 dt
2

=2 1.171953 .t' —t+1

ie„„, p'q
2 ln, l2(pipt) +3(Q2Q2) + ($3/3) l

+
2 2 12 ~3(41~ Pv Pl) + (C12~ GgviC 2) 3(iCI3rr GPyiCi3) ~

(Q2 2 12

Cl
+

9 G;.G."" (i 0 )+ (4)

For (I'i, I 2) (Y hays)

Eq. (4) with (p, ~ ici3), (5)

where rr, =g/4~ and p, is some typical hadronic
mass (eo'23 = + I )

The Feynman diagrams contributing to (3)—(5)
are those of Figs. 2 and 3, and we used the vacuum
dominance approximation in the evaluation of the
(QQG ) matrix elements in (4) and (5).

The contribution of the 1 + hybrid mesons to
these expressions is obtained by projecting them on

[g„„—(p + q) (p + q) „/(p + q ) ]. In the cases
(r, , r2) =(iys, y„), (y„,iys) this shows that Eqs.
(4) and (5) include only the spin-1 contributions,
but in t e case (1,, 1.2)=(iys, iys) it vanishes
identically.

perm.

perm.

perm.

FIG. 2. The OPE for (I'&, I 2) = (iy, ,iy, ) FIG. 3. The OPE for (I'i, I 2) = (i ys, y„), (y„,i ys)
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Actually, it is possible to show in the last case
that for massless quarks, in the given kinematical
situation, the Wilson coefficients of the operators 1

and G at lowest order in o., are proportional to
(p +q)„not only for the short-distance singularities
but for all values of p and q.

However, for small but nonzero quark masses,
terms such as (m /g )Q ln Q and m/Q (tc(P),
proportional to (p —q)„which include spin-1 con-
tributions, would presumably be obtained but they
are small for light quarks.

In higher order in o.„one expects contributions
proportional to (p —q)„, even in the case of mass-
less quarks, but again they are small when com-
pared to other decay modes.

We therefore conclude that in the real world the
decay modes h mq, mq' must be suppressed
compared to h vrp, which should be the dom-
inant decay mode of the 1 + (I = 1) hybrid meson.

This result is in disagreement with Tanimoto's
predictions.

ghap
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FIG. 4. The prediction for gk p and I'(h 7rp).

J„'"'(x)=d(x)y G „(x)u(x),
Jt"'(x) = u (x)i y,d (x),
J„"'(x) = —,

'
[u (x)y, u (x) —d (x)y„d (x) ], (6c)

(6a)

(6b)

while the three-point function reads

For definiteness, let us consider the decay
h (I = 1) 7r p . The corresponding operators
are

~td4xd'ye'"e'~(0IT(J (x)J p (y)J" (0)]~0) =is„„p p q A(g )

From Eqs. (4) and (5), we have

2

A (Q2) = * [(uu) + (dd) ] 2
ln

2
+ [(p, rr""G„„„)+ (drr""G„„d)]

3m

+ G'„„G,"' uu + dd
2 3

+. . . .
&8

~ ~ ~ ~ (8)

On the other hand, by definition of the hap coupling through the introduction of a phenomenological in-
teraction Lagrangian

W t ff gk~p (ikepppp'8 h/'8 pj~k&

where ij,k = 1, 2, 3 are isospin indices, one obtains for (7)

m2 m2 m4

m„+ md gp gp, (g'+ m' ) (g'+ mp') (g'+ m„')

(9)

(10)

We did not include in the phenomenological model for A (Q ) other contributions, such as higher-lying
resonances or continuum states in each of the h, vr, or p channels. After Borel transformation, these contri-
butions are not suppressed as much as they are in the case of two-point functions. Had we worked at a non-
symmetric kinematical configuration, these contributions would have been suppressed by the use of double
Borel transforms of double dispersion relations.

However, since we only try to make an estimate for the widths, we will assume in the following that these
corrections are small and neglect them.

Then, identifying the Borel transforms of Eqs. (8) and (10), we obtain for the h mp coupling

(mk' —
mp )(m„' —m')(mp —m„') —1

[ („-„)]
[f~m~/(m„+ md)] J2(mp/gp) J2(mk/gk)

n, (P, ) [ln(M /P, ) —y]+ ( —7r/8)(mo/M ) + ( —7r /12) ((o.,/m) G„'„GpP") [1/(M2) ]
X

m 2(M2 2 2 m2j M2 2 2
—m 2(/M2

(mk —
mp ) e —(mk —m~ ) e P + (mp —m~ ) e
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where y is Euler's constant, and we used

(urr""G„„u) + (drr""G„„d)= mo2 [(uu) + (dd) ]

with mp = 0.5 to 1.0 GeV .
The decay width is

(12)

r(h--m-p )= g„.p 1

12m-

2 2 2'2
m& +m —m

2m(

'
3/2

—m 2 (13)

Some of our results are shown in Fig. 4, with mp ——0.8 GeV and A = 100 MeV. We used

(uu) = (dd) = ( —0.25 GeV), m„+md ——11 MeV, m =137 MeV,

2

f„=95MeV, m~=770 MeV, =2.4 (Ref. 1), mq =1.3 GeV, (14)

= 1.1 x 10 (Ref. 3),
gI

G'„„GJ" = (0.33 GeV), a, (p, ) =
7T 91n p2 A2

The values for M have to be chosen in some in-
terval, so that the contributions of the higher power
corrections and of the continuum states are expect-
ed to be small. We consider the interval [0.6; 1.4]
to be reasonable, since at M = 0.6 GeV the contri-
bution of the last term in the numerator of Eq. (11)
compared to that of the second term is less than
20%, and 1.4 GeV is somewhat less than the
threshold of the p continuum' (the Jt continuum is
higher ). With these restrictions in mind, the QCD
sum-rule predictions are

g„„,= ( —2) to ( —7) GeV

I'(h Tr p ) = 10 to 100 MeV
(15)

as can be seen from Fig. 4.
These numbers depend somewhat on the values

of A and mp, because the first two terms in the
numerator of Eq. (11) are of the same order of
magnitude. Taking A =200 MeV or mp ——0.5, 1.0
GeV affects gz ~ on the order of 20%, which is the
characteristic precision for QCD sum-rule predic-
tions.

We therefore conclude that, within all our ap-
proximations, the QCD sum-rule approach predicts
the l't (I = 1)m. p coupling and the corresponding de-
cay widths as being those given in Eq. (15). This
agrees with the lowest order of magnitude estimate
made in an earlier work, ' but disagrees with
Tanimoto's predictions.

These hybrid states could be produced in radia-
tive decays of heavy quarkonia, and we find it
important to look for them in e+e experiments.
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