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The possibility is discussed that the lowest-energy state for certain quantum numbers in-

volves a Higgs field polarized into a skyrmion-type configuration. In some models a new

type of vacuum instability arises. Phenomenological consequences are indicated schematical-
ly.
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In theories where particles acquire mass through
their interaction with a symmetry-breaking conden-
sate, it has long been recognized that the lowest-
energy state carrying the quantum numbers of a
heavy particle —heavy, that is, if the condensate
were to retain the value most favorable in vacuo-
might be a state in which the condensate takes a
form very different from its uniform vacuum value.
For example, the heavy particle might carve out a
spherical region' or a shell wherein the condensate
vanishes, thus reducing its effective mass at the
cost of volume and gradient energy associated with
the variation of the condensate from its vacuum
value.

A more subtle possibility is implicit in recent
work on fermion charges induced by vacuum polari-
zation in the presence of a spatially variable con-
densate, which need not vanish anywhere. Most
of this work is concerned with computing the
charges induced by a given topologically nontrivial
configuration of the condensate.

In this work it is shown, among other things, that
a spatially extended skyrmion will in its ground
state carry the quantum numbers of the heavy fer-
mions (whose Compton wavelength is significantly
smaller than the spatial scale), but not the quantum
numbers of light fermions. However, since
Derrick's theorem sho4s, at least in the context of
renormalizable field theories in 3+1 dimensions,
that the possibilities for classically stable (e.g. , for
topological reasons) configurations are extremely
limited, it becomes a nontrivial problem to find
physically significant applications in this context.
One possibility, which we explore here, is that a de-
formed condensate is stabilized, for energetic
reasons, precisely because of the fermion charges it
induces. In other words, it becomes stable if it is
the lowest-energy state with the particular fermion
quantum numbers it induces.

1+1 dimensional model. —To illustrate the idea in
a simple context, consider fermions coupled to a
boson field 8 according to

W = —,
' (t)„0)2 —M2(1 —cos0) + QigQ —gQ exp(i&ps) Q.

f

If 0 is imagined to be steady at its vacuum value 0 = 0, then Q will create quanta of mass approximately g. To
investigate what really happens in more detail, we can bosonize the theory, replacing the fermion field Q by

a nonloca] expression in a boson field p. In this mapping certain important bilinear expressions become local

expressions in $. In particular the Lagrangian becomes

~= —,
' (t)„0)2 —M (1—cos& ) + ,' (B„p) + ,', —g m cos (0——42m p ), (2)

and the conserved fermion number current

Qy~lJi = (2tr) e~vd„f. (3)

(There is a certain arbitrariness in the coefficient of
the interaction term, corresponding to different
methods of regularizing the theory. We have
chosen it so that the soliton $=4tan 'e~,
m = g /32 with 0 =0 fixed has mass g, as does the
corresponding unit fermion number excitation in

the original theory. )
While for M )) m the 0 field is rigid and the as-

sumption that 0 = 0 should be essentially correct for
M(& m we can lower the energy considerably by
allowing the 0 field to follow the P field, 0 =J2mg.
By doing so, we find a state with fermion number
unity and mass = M

Four further remarks regarding this simple model
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L = (N/M)

E= N'i2M

(4)

This energy is of course « Ng, the energy of the
corresponding state with 9 —= 0. Moreover, the
minimum energy for a state carrying, say, the first
N —1 but not the final fermion number will be
markedly higher.

3+1 dimensions. —We consider a linear o- model
coupled to N fermion doublets. The coupling is

are now appropriate, since they generalize:
(i) The effective position-dependent mass for the

fermion generated by H(x) in (1) does not go
through zero or even vary in magnitude, though it
does vary in phase.

(ii) The distinction between small and large de-
formations induced by fermion number f can be
made sharp in the following sense. The 8 field has
its own conserved current j„=I/2m'„„&„0 and
charge f. The sharp question is, For given f, what
value of fgives minimum energy?

(iii) One can change the model by expanding the
internal space of the 0 field into a larger manifold,
say a two-dimensional plane. Let us replace the
exp(i&y5) by $t+iy5$2 in (1) and imagine a po-
tential V(pi, $2) which is minimized uniquely at
pt= 1, $2=0, and has a local maximum at
pt=pz=0. In this context the conserved current j
cannot be defined; there is strictly speaking no top-
ological content in any spatial Pt, $2 configuration.
However, insofar as the point $t = P2 = 0 represents
a barrier the internal space may be approximated by
a plane with the origin excised, for which the angle
tl = tan '$2/pt and thereby the current j is defined
(strictly speaking only 88 is defined, but this suf-
fices to define j). The consequent "topological"
solitons will be at best metastable in themselves,
since the topology is undone by tunneling over the
barrier at $&=hz=0. (This costs finite energy—
since Pt 1 on both sides, only a finite volume en-
ergy is involved). The crucial point is that the con-
figuration discussed above may still be the lowest-
energy configuration for f=1 (we expect this for
sufficiently heavy fermions), which will make it ab-
solutely stable.

(iv) Consider coupling N heavy fermions to 0 as
in (1). The deformed vacuum state with 0 varying
from 0 to 2m over length L and the bosonized fields
following will have gradient energy of order N/L
and potential energy M L, with the total minimized

at

taken to be

N
—~1= Xgf)(o.+in ry5)PJ,

j=1
(6)

so that the fermions acquire mass p, =gv in the
vacuum (o.) = v. We have in mind primarily weak
interaction Higgs fields coupling to heavy quarks or
leptons. 4 5 9

Spread-out skyrmion configurations of the type

(a., rr) = v(cos8(r), r sin8(r)), (7)

QH —1/R, p, R » 1

induce unit fermion numbers of each type, i.e.,

E~ —v2R, (10)

which is to be compared with the energy for N ap-
proximately free fermions, N p, . We can reconcile
the consistency requirement (8), R p, » 1, with
the energetic requirement v R & N p, if g N » l.

Controlled calculations can be done in the limit
N ~, with g N fixed; the leading order expres-
sion for the effective Lagrangian of the scalar in-
volves summing one-loop fermion graphs with no
internal lines. ' We assume that the minimum en-
ergy for a spatially uniform cr field occurs at
(a.) =u, and we expand the energy for spatially
variable o. and rr (assuming, for convenience, that
o2+ vr 2=v ) in powers of gradients. One readily
estimates that successively higher powers of gra-
dients are accompanied by factors I/p, R, so that
they will be smaller under condition (8). The terms
with four gradients can be determined according to
the familiar interpretation of the effective Lagrangi-
an as a generating function as follows. The calcula-
tions are done in the framework of the linear o-

model; the restriction to the nonlinear model is
made only when the coefficients are evaluated.

The effective action I'[$] can be expanded in two
ways: in powers of P,

&pp &
dx= 2Vp 2 dx= . . . =1, 9

as can be proved by the adiabatic method.
The condition R p, » 1 ensures that the skyr-

mion does indeed carry the corresponding fermion
quantum number; in the opposite limit the back-
ground field is essentially invisible to the fermion,
being averaged over by zero-point motion.

The gradient scalar energy associated with such a
configuration is

r [y] = X„, d4x, d4x„r t,"I . . , (x, . . .x„)y., (x, ) y. (x„),1
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and in powers of gradients. There are ten terms with four derivatives:

r [p] = Jl d x[x,(p )8 y.a'~. + X,(y') a„y.e y.e„ybd"0b

+ X3($ )8 $ 8 Q d Qbd"yb+ r, (y')y, a„y.ybd a'yb

+ I'2(4')A. fl„k.f)'%br)'4 + I' (4')4.~„4.~"4 b~"r)A b

+ ~4(4' )4 ~ 4 4 bd 4 b4 d 4 + ~5(4 )4 ~ 4A br) 4'b~A r) 4'

+ I;(@')e.a„O.yba„ebs y,e"y, + I;(y')y. a„y.pbbs pbbs, aA, y,a"ygl . (12)

Only the first three terms survive in the nonlinear model since p, ti„p, = —,
' 8„$2=0; by computation of

judiciously chosen vertex functions they can be isolated. For example, only the first and fourth terms contri-
bute to the momentum-space vertex functions with only two nonvanishing external momenta. A further
simplification can be made with the assumption that $a= u, $ = 0 at the point about which the gradient ex-
pansion is made. Then only the first term contributes to

r, , ij(0, . . . , O,p, —p) (i,j ~0).
If we sum over all possible diagrams of this type, the zero-momentum vertices simply give the fermion a
mass p, —= g~, and

I ii (p, —p) =2p 5»Xt(u )+other terms.

The left-hand side is easily calculated; the result is

Xt = N/48m 2v2

In a similar manner the second and third terms can be isolated; one finds

r»k)(p, p, q, —q) —=85;,Ski[X2(u )p q +X3(u )(pq) ]+other terms,

from which

X2= —N/32m v, X3=N/48m u

From Eqs. (14) and (16) the energy is"

(13)

(14)

(IS)

(16)

Es= d X 2 ~i a + N m' — 48m 8 a8 a+ 32@ Bi a~i a~i b~j b

—(48 ) 't),y.li,y.ti,y,e,y, ] ).
It is easy to show that

a a i a i a j b j b i a j a i b j b.

(17)

The signs of the coefficients of the higher-order
terms are rather disappointing in the following
sense. If they were all positive (or, more generally,
if they summed to a manifestly positive quantity)
they would represent a contribution to the gradient
energy which would scale with the characteristic
size R as

(18)Eg —ctv R + c2g N/R (ct,c2- 1),
which would be minimized at

R — &Ni /v2= (g2N)& 2/ (19)
and we would have had a fully self-consistent [cf.
(8) and notice the role of large N here] stable semi-
classical description of the soliton, circumventing

Derrick's theorem. The result actually obtained re-
quires quite a different interpretation. We find that
for Ng && 1 we can make the total energy negative
for R such that (8) is still obeyed, indicating an in-

stability of the originally assumed ground state.
Similar results have been found in models contain-
ing many heavy scalars. ' Our search has not been
exhaustive, and a model with positive gradient en-

ergy may yet be possible.

For g N —1, N ~ the gradient expansion is
useless. To see if the skyrmion is energetically
favored the energy associated with polarizing the
Dirac sea must be calculated; fermion determinants
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similar to what we require are routinely calculated
in lattice simulations and we plan to pursue this ap-
proach further.

Phenomenology. —There is an important qualita-
tive distinction between the skyrmion-type bags dis-
cussed above and more traditional bags, which leads
to striking phenomenological consequences. It is
that the skyrmion-type bag is intrinsically associated
with ft =. . .=fz = 1 in its ground state, so that, for
instance, ft =. . .= f~ I

= 1, f~ = 0 is higher in en-
ergy. In traditional bags, removing fermions of
course tends to lower the energy. The reason for
the difference is that while the scalar fields associat-
ed with traditional bags lower the energy of
positive-energy fermions (by turning off their mass
in a finite region) they do not send these energies
through zero. In continously turning on a
skyrmion-type bag from the vacuum, on the con-
trary, we find a positive-energy level going nega-
tive. In the former case, it always costs energy
(though less than before) to add fermions, while in
the latter case there is actually energy gained by fil-
ling the level.

In the real world, heavy quarks, if they exist at
all, will probably not give us new absolutely con-
served quantum numbers but rather analogs of
charm and strangeness which are violated by 8'-
boson interactions. (In our sense "heavy" means

g N —1, where g is the fermion-Higgs coupling, or
mJ; —300 GeVigN. ) If the skyrmion state with

ft=. . .= f~=1 is produced it may be very long
lived and decay into many-jet final states: Since
sequential decay is blocked, its decay requires that
all N fermions decay simultaneously.

Another noteworthy effect is common to all types
of bags stabilized by approximately conserved quan-
tum numbers. That is, after the fermions decay,
they leave behind an "empty bag" that has lost its
raison d' etre; it will decay by contracting and emit-
ting a coherent shower of Higgs particles, if the
semiclassical description is valid.

We may summarize the main points of this Letter
as follows:

(i) Calculations of fermion quantum numbers in-
duced by topologically nontrivial background scalar
fields may in certain cases be turned around; the
fermion quantum numbers will induce scalar con-
densates to deform.

(ii) By calculation of the energy associated with
effects of this kind, the gradient expansion can be a
powerful tool. When combined with a certain
large-N limit, it gives tractable expressions for
quasirealistic models. Here it was used to show that
the Higgs field in a standard SU(2) &&U(1) gauge

model will deform if many different heavy quarks
are present. In many cases, a new vacuum instabili-

ty arises.
(iii) The phenomenology associated with this

type of "weak bag" is distinguishable from that of
other bags that have been discussed as a conse-
quence of the fact that quite specific quantum
numbers are energetically favored.
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