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First-Order Reentrant Transition in Granular Superconducting Films
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A quantum Monte Carlo method is developed to treat path integrals at finite temperature
and with topological constraints to study a periodic model of a granular superconductor. The
results obtained provide strong evidence for a low-temperature first-order reentrant transi-
tion induced by zero-point quantum fluctuations.
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The possibility of having a low-temperature reen-
trant phase transition in granular systems, induced
by quantum fluctuations, has been a source of con-
troversy for some time. ' The first indications that
a reentrant transition could appear in such systems
came from mean field theory (MFT) and self-
consistent harmonic approximations. ' Later, fur-
ther analysis of the MFT led to the conclusion that
there is no reentrance in a model that includes only
diagonal charging-energy effects and that there is a
very restrictive kind of transition in the model that
includes the off-diagonal terms. Since there are
fairly convincing arguments which show that there
must be a nonzero critical value of the magnitude
of quantum fluctuations below which the system is
superconducting at zero temperature, one may be
led to surmise that no such transition should take
place in these systems. Recent1y, however, one of
us has carried out a semiclassical calculation in the
diagonal model in two dimensions. From this
renormalization-group (RG) analysis, evidence for
a low-temperature instability was found which could

be identified with a reentrant transition. Although
this analysis included fluctuations that were left out
in the MFT treatments, the calculation is based on a
perturbative expansion in Plank's constant. One
would expect that these results should be valid
close to the Kosterlitz-Thouless (KT) critical tem-
perature, where long-range phase coherence sets in,
but less so at lower temperatures, where a reentrant
transition may take place. To resolve this controver-
sy, it is therefore necessary to study this problem
nonperturbatively. The purpose of this paper is to
present the results of the first such calculation.

Our method of attack consisted in developing an
appropriate Monte Carlo (MC) algorithm designed
specifically for the diagonal model. From the
results of this analysis we conclude that there is
indeed a low-temperature instability in the model
which can be interpreted as a reentrant transition.
Further, our MC data provide strong evidence
showing that this transition is, in fact, first order.

The model we study is defined in terms of the
imaginary-time partition function

~s g2 dp;(r)Z= fd[d( )]exp ——f J ' +E,d;@( ) d
2u dr

where g,.@(r)= I —cos[d, +t(r) —@;(r)]. In (1), $C [0, 27r] is the phase of the order parameter, u mea-
sures the strength of quantum effects, and E& is the Josephson tunneling amplitude, which we take to be in-
dependent of temperature; P= I/kaT with T the temperature, and the sum over i is over two-dimensional
vectors defined on a square lattice. There are several important differences between the above partition
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function and those studied in usual MC simula-
tions. First, notice that the temperature appears in
the limits of integration over imaginary time, and
also in the essential quantum-periodicity condition,
$(r+pt) =(I[](v). Because (t] takes values in the
circle this imposes a topological constraint in the
path integral which has to be kept track of. To per-
form the MC simulation, we discretize the
imaginary-time direction; then the correct low-

temperature quantum results arise when the contin-

uurn limit in this direction is taken. As we discuss
below, this necessitates a rather large amount of
computing.

To illustrate this procedure, consider first the
case E&=0. This corresponds to the trivial d =0
quantum-mechanical problem of a set of decoupled
rigid rotors, for which an exact answer is known.
We want to rederive this answer from the path in-
tegral given above. Discretizing (1) with E,= 0 we
get for each rotor

Zo= (I.,[2rr(]u) ' f f([P] exp[ —X(L/2Pu, )6,4(r)]. (2)

where A,y(~) =1—cos[P(r+ I) —P(r) j. The
periodicity of (t] is taken care of by the form that we
have chosen for 4,(l]]. In (2) we have divided the
time interval into L, time slices with separation e
such that L,e = pt The c. ontinuum is recovered by
considering the limit L, ~, e 0, with L,e
fixed. Notice that the action in (2) looks like that
of a classical XY model in one dimension. The
difference here, however, is that at finite tempera-
tures the evaluation of (2) requires that the
quantum-periodicity constraint on (t] be taken into
account. Therefore, the known solutions of the
2 =1 XY model do not correspond to the quan-
tum-rotor solutions in the continuum limit. An an-
alytic evaluation of Zo leads to the correct rotor
solutions in the continuum limit. Our interest here
is to obtain such solutions using MC methods.

As in MC calculations in the classical XY model,
we approximate the U(1) symmetry of the problem
by considering a Z(N) subgroup. However, here

we found that in order to obtain reliable results for
the quantum rotor, we needed W much larger than
usual: Whereas N = 12 is sufficient in the classical
case (at moderate temperatures), here we needed
N = 5000. More important is the fact that L, has
to be large at low temperatures. For instance, for
pu = 30 we needed L, = 1500 in order to get results
differing from the exact answers by 2%. Also as
important is the fact that we needed a rather large
number of MC steps (MCS) per site to reach ther-
modynamic equilibrium. Of course, this d = 0
problem requires larger values of L, than a higher-
dimensional problem. Nevertheless, the d = 0
problem does provide lessons about the tempera-
ture dependence of the number of levels, L„
necessary to obtain continuum-limit answers, as
well as the number of MCS/site required.

We can now turn to the problem defined by Eq.
(1), which is the central topic of this paper. The
discrete version of (1) reads

L,
,
2vrnE

' V/2

(3)

with b, ;g and h, (t defined below (1) and (2). In
(3) we have defined V=L„L»L„with L„,L» the
spatial lattice dimensions, E = pEq, and we have
defined the parameter, o. = u/E&, which measures
the relative importance of quantum to thermal fluc-
tuations in the model. To see continuum results we
must have L, )) I(:n= pu. In this representation
we recognize an important dual symmetry with a
clear physical content: At low temperatures the
kinetic (or charging-energy) term dominates over
the potential (or Josephson) contribution, with the
opposite true at high temperatures. This dual sym-
metry is crucial in the construction of an efficient
MC algorithm since one term is relevant when the
other is not. We are mainly interested in the
ultralow-temperature regime, so we carry out the

MC updating in two steps: First we go through our
three-dimensional lattice shifting an entire column
of p's along the v direction by the arne angle, ac-
cepting the update in the usua1 MC manner. Next
we go through each site updating individual angles
using a standard Metropolis algorithm. This meth-
od, entailing two separate updates, was found to be
very efficient at low temperatures.

We calculated several thermodynamic quantities
as functions of E, o, , the volume in our slab
geometry, and the number of MCS/site. Here we
shall report on the results obtained for the helicity
modulus, Y, the internal energy, E, and the specific
heat, C. From the response of the system to a twist
along one of the spatial directions we derive the ap-
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propriate expression for Y following the logic of
Ohta and Jasnow. This quantity provides a good
test of the superfluid properties of the system since
it is directly proportional to the superfluid density. 7

We first checked our calculations in the classical re-
gime and indeed found that Y has a rapid variation
around the KT critical temperature, defined as the
temperature at which Y intersects the line passing
through the origin with slope 2/7r. From RG
analysis we know that universality of the critical
exponent q still holds for small enough n. How
small o. should be, though, is not known. In Fig. 1

we show our MC results for the KT critical tem-
perature as a function of o. . Each set of values for
Y (10-12 for each value of o. ) was obtained by
averaging over 200 sets of 200 iterations for a total
of 4 x 10 MCS/site (after discarding 10 MCS/site
for thermalization). A linear least-squares fit to the
data up to a=2 gives 1/K, =0.93036-0.08815tr,
which agrees rather well with the tr =0 (classical)
value. The smallness of the coefficient of the linear
term supports our earlier assertion about the
correctness of the semiclassical approximation of
quantum effects close to the KT critical region. As
o. increases, the specific heat has a hump of de-
creasing height and at a decreasing temperature,
which is, as in the classical case, always above
1/K, (A).

We now come to the central results of this paper,
which pertain to the ultralow-temperature region of
the model. In Fig. 2 we show results for the helicity
modulus (normalized by dividing by a L„L~E,,
with a the physical lattice spacing) and the specific
heat (normalized by dividing by kaL„L~Et ) for
n=0.3 and Eq//f =1. Each point was measured by
averaging over 200 sets of 200 iterations each, for a
total of 4 x 10 MCS/site (after discarding 10
MCS/site). Some consistency checks were per-
formed with longer runs (as long as 3 x 10s
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MCS/site). Starting at around 1/K = 0.1, both Y as
well as C increase smoothly as the temperature is
decreased. This smooth behavior continues up to
1/K = 0.03, at which point there is a sharp drop in
both of these quantities as a function of tempera-
ture. This behavior is markedly different from that
observed in the classical case, and is therefore fun-
damentally due to quantum-mechanical effects.
This dramatic change in behavior for both Y and C
is a clear signal for the existence of a reentrant tran-
sition. To determine the nature of this transition
we looked at the values of several quantities as
functions of the MC iteration number. A particu-
larly revealing example of this analysis is provided
by the internal energy. In Fig. 3 we show the
results for the MC time evolution of the internal
energy in the region 0.01~1/K (0.03 for o. =0.3.
(Each point represents 200 iterations, for a max-
imum of 4x104 MCS/site). These results provide
strong evidence for the existence of two different
stable phases in this region and, hence, for the ex-
istence of a first-order transition; a totally unex-
pected result. Further evidence supporting this
conclusion comes from the observed metastability
in this region: We were unable to obtain reliable
results for either the specific heat or the helicity
modulus (both quantities being measured by
averaging fluctuations). It is possible that a careful
pruning of the data may lead to results for these
quantities in the critical region, but no such effort
was made. We have not as yet performed a sys-
tematic analysis of finite-size effects, and these ef-
fects may be crucial in determining conclusively the
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FIG. 1. KT critical temperature as a function of n.
Lattice sizes were 10&10&&L„with L, =10 for 0~o.
~ 2 and L, = 30 for n & 2.

FIG. 2. Helicity modulus, Y, and specific heat, C as
functions of 1/K for a=0.3. Lattice sizes were 16
x16xL„with L, =40 for 1/K «0.06, L, = 60 for 0.03
~ 1/K ( 0.05, and 10x 10 x 150 for 1/K ~ 0.03.
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order of the transition that we have found.
We can argue about the nature of the

phenomenon which triggers the low-temperature
transition. From RG analysis it follows that quan-
tum fluctuations nucleate vortex pairs as the tem-
perature decreases. The fact that thermal vortex
pairs also nucleate as the temperature decreases im-
plies that the fugacity should have a minimum as a
function of temperature, leading to a first-order
transition.

To conclude, we have presented, for the first
time, strong nonperturbative evidence pointing to
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FIG. 3. Internal energy per site (divided by EJ) as a
function of the MC iteration number for o. =0.3. The
three upper sets of points (labeled a) correspond to
I/K =0.015, 0.020, and 0.025; the lower set of points
(b) corresponds to I/E =0.010. All lattices sizes were
10x 10x 150.

the existence of a reentrant transition in a periodic
model of a granular system. The transition is in-

duced by quantum fluctuations and is found to be
first order. Experimentally, reentrance may be seen
in regular arrays of Josephson junctions in which
the charging energy is large and can be varied, or
in granular systems in which the grains are small
and the samples are not too inhomogeneous.

Most of the numerical work involved in this
analysis was done on a CRAY-1 computer. A total
of approximately 40 h of CPU time was used. More
details about the calculations as well as more exten-
sive results will appear elsewhere. '
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i~After this Letter was submitted for publication, we
learned that preliminary supporting experimental evi-
dence has been found in ultrathin tin films by A. Gold-
man er al. (A. Goldman, private communication).
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