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Electromagnetic Absorption in a Disordered Medium near a Photon Mobility Edge
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A frequency regime in which electromagnetic waves in a strongly disordered medium un-
dergo Anderson localization in d = 3 dimensions is suggested. In the presence of weak dissi-
pation in d = 2+ e it is shown that the renormalized energy absorption coefficient increases
as the photon frequency cu approaches a mobility edge co' from the conducting side as
n —((0 —(v) t~ ""(', v = I/a. This mobility edge occurs at a frequency compatible with the
Ioffe-Regel condition.

PACS numbers: 71.55.Jv, 78.50.—w

The propagation and absorption of electromag-
netic waves in a disordered medium is a subject of
considerable interest with a variety of applications
in physics, chemistry, and engineering. This has
largely been studied experimentally in a regime of
scattering strengths in which the photon elastic
mean free path l is long compared to other relevant
lengths such as the electromagnetic wavelength X

and the mean free path l;„,l for inelastic processes
such as absorption. For example, recent experi-
ments on far-infrared absorption from randomly
distributed small metal particles' have explored the
regime where the elastic mean free path is longer
than both of these lengths as well as the sample
dimension L (l » L » l;„«» X). In light
scattering from colloidal suspensions, the medium
is said to become turbid, on the other hand, when
I. » l » X. Here, multiple scattering gives rise
to diffusive propagation of electromagnetic energy.

In this Letter we discuss the possibility of yet
another qualitatively new behavior in a disordered
medium in which elastic scattering is sufficiently
strong that I;„,~ && l —X. In the absence of dissipa-
tion, the condition l —X is precisely that which has
been suggested as a criterion for the Anderson lo-
calization transition of an electron of de Broglie
wavelength X in a disordered solid. It may likewise
be shown from first principles6 that in d =2+&
dimensions, a localization transition for waves in a
disordered medium occurs when (i/X) ' —I/a,
d & 2. Physically, this occurs as a result of strong
wave interference from different scattering events
and the consequent renormalization of the photon
diffusion coefficient to zero. In the presence of a
small imaginary part of the dielectric constant, the
near vanishing of the diffusivity gives rise to an
anomalous rise in the energy absorption per unit
length as the photon mobility edge is approached
from the conducting side. Unlike the absorption in
a tenuous medium (l » L » l;„,1 » A. ) which is
given simply by 2l;„,~, the rise in absorption is

mediated by the fundamental change in the nature
of transport through the disordered medium. The
observation of such behavior in a strongly scatter-
ing, weakly dissipative medium is suggested as a
probe for the existence of a photon mobility edge.

A plane-polarized electromagnetic wave entering
a disordered medium loses memory of its initial po-
larization as a result of scattering on length scales
long compared to the mean free path l. Since the
phenomena of diffusion and localization occur on
precisely such a scale, we will neglect effects due to
the vector nature of the photon field and consider
for simplicity the scalar wave equation,

V'(/ = [a(x)/c']8'(t/'rir', c = 1, (la)

where

a(x) = I + t(ax) + ( 2a (Ib)

is the complex dielectric constant and hereafter we
work in units in which the velocity of light is unity.
For the interested reader, the localization transition
for a more general vector field has been derived in
a previous paper. 7 It is assumed for simplicity that
the imaginary part of the dielectric constant e2 is
uniform throughout the medium and that the disor-
der which enters the real part el is uncorrelated
from point to point in space. The latter assumption
is valid provided that the photon wavelength is long
enough compared to the actual correlation length of
the disorder. The effects of correlations which play
a role in determining the existence of a mobility
edge have been discussed in detail in a previous pa-
per and will be incorporated as needed.

For photon frequencies co sufficiently far from
the mobility edge such that wave-interference ef-
fects can be neglected, the local electromagnetic en-
ergy density E(x, t) satisfies a diffusion equation.
In particular, for a point source of power I' in a
medium with weak uniform dissipation as described
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by (1b), the steady-state form of the equation is

0= BE(x,t)/Bt

=D(~)& E(x,t) —,
'

e2c—oE(x,t) +Ps (x). (2)

tion in d = 2+ e of the form'2

dg 1 ~d g'
d lnL 4 (27r)4 1+hg

= —eg+—

dh

d lnL

(6a)

(6b)

QJ+ OJ + I 7).

The ensemble-averaged energy density E(x, t) is
determined by the averaged two-particle Green's
function ( i G (x, 0;co+ ) i ),„«mb„which may be
conveniently evaluated by use of a replica function-
al integral representation. ' " Saddle-point evalua-
tion of the functional integrals leads to a nonlinear
o- model for which the dimensionless coupling
constants are the conductance,

X (o) ) = g ' = —,
'

m p (a ) D(o ) l4

and a replica-symmetry-breaking field,

(4a)

h = ,' me2a)p(co)l, — (4b)

associated with dissipation. Here all lengths are
measured in units of the photon elastic mean free
path l and p(c0) is the photon density of states. The
bare propagator of the nonlinear o- model takes the
form

Here, D(co) = lc is a diffusion coefficient for pho-
tons of frequency cu. Such an equation of radiative
transfer is analogous to the Boltzmann equation and
follows from the addition of wave intensities rather
than wave amplitudes. The generalization to other
geometries of experimental interest such as a plane
wave (collimated beam) impinging on a slab of
disordered material follows readily from an ap-
propriate modification of the source term in (2).

Both the steady-state diffusion equation (2) and
its generalization to include the effects of wave in-
terference may be obtained from first principles
from the Green's function of the associated wave
equation (1a):

['7'+&vie(x)]G(x, 0;cui) =54(x),

Here, Sd is the surface area of the d-dimensional
unit sphere. The form of the propagator (5) sug-
gests that an incident plane wave of intensity Io de-
cays with distance x traversed in the disordered
medium as

1=Ioe ", n= (hg)' /l. (7)

Linearization of the recursion relations about the
Anderson-Wegner fixed point (g', h") = (4e(27r) /
S4, 0) yields the homogeneity relation

n(b, g, h ) = b 'n(b'Ag, b4h ),

where

(ga)

(gb)

D(m') —I/(g'l;„, i ). (11a)

With use of (10), (7), and the definitions (4a) and
(4b), it follows that the absorption peak

describing the renormalization of the absorption
coefficient due to strong wave interference near the
photon mobility edge co'. With the choice
b =(Ag) '/', it follows that the absorption in-
creases with frequency as

n(~) hl/2( )
—(4 —2)|/2 I/

from the conducting side provided that
Ag ) h d . Here, the assumption of weak dissi-
pation,

I;„,1 = [cuim(I + ie2)"'] ' » l, (10)

has been made since inelastic effects act as a long-
distance cutoff of the renormalization of the photon
diffusivity and accordingly a cutoff to the diver-
gence (9) of the absorption. In particular, since at
the fixed point g is independent of length scale, it
follows from (4a) that the residual diffusivity at the
mobility edge ~' scales with l;„,l as

+ ensemble
n(~")~ [e /D(~')]"' —" "" (11b)

~ (h +g 'q') ', (5)

in accord with the form suggested by the steady-
state diffusion equation (2). The effects of wave
interference may now be incorporated systematical-
ly by momentum-shell integration of the nonlinear
o- model, leading to renormalization-group flows at
the one-loop level for the conductance and dissipa-
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p(~) = [&d/(2~)']~' ', (12)

it follows from (4a) [D (cu) = l] and the fixed-point
condition that the mobility edge in d = 3 occurs at a

persists for arbitrarily small but nonzero e2 in three
dimensions. With use of the free-photon density of
states



VOLUME 53, NUMBER 22 PHYSICAL REVIEW LETTERS 26 NOVEMBER 1984

frequency co' such that

(13)

As a guide to the amount of disorder required to
achieve this condition, we consider the scattering
from a collection of highly conducting metallic or
insulating dielectric spheres immersed in an other-
wise uniform background. For wavelengths long
compared to the sphere radius, a, the photon is
Rayleigh scattered with a cross section 0-
—(cu/c)4a6, and for arbitrarily high sphere density
n, (as geometrically allowed), the mean free path
l —1/(n, o.) is long compared to the wavelength
and the states are extended. In the opposite limit of
wavelengths short compared to the sphere size, the
cross section approaches the value o-=2vra given
by geometrical optics. Here again, the wavelength
is short compared to the mean free path for arbi-
trarily close-packed spheres and the waves prop-
agate classically. However, there exists an inter-
mediate regime A.

—a, for which the mean free path
may become comparable to A. as the interparticle
spacing is reduced to the smallest allowed values.
This is summarized schematically in Fig. 1 for dis-
order characterized by a correlation length a. The
behavior of the mean free path may alternatively be
derived by considering a Poisson distribution of
spheres and regarding the scattering as arising from
fluctuations in their local number density.

The range of wavelengths for which I —
A. corre-

sponds to a region where weak localization may oc-
cur and which separates the high- and low-

frequency regimes of extended states. In the pres-
ence of weak dissipation, such a region should be
signaled by an anomalous rise in absorption of the
form (9). The example of spheres serves only as an
illustration. The accessibility of the localization re-
gime depends more generally on the preparation of
a disordered medium which scatters waves suffi-
ciently strongly that the 1offe-Regel conditions (13)
is satisfied and for which the dissipation can be
made sufficiently weak. Another possibility might
be a medium consisting of a dense tangle of coated
metal wire. Systems occurring in nature such as
rain clouds or colloidal suspensions, which although
capable of sustaining diffusive scattering, in gen-
eral do not achieve a condition analogous to the
close packing of dielectric spheres with the onset of
precipitation.

In summary, it has been demonstrated that a sig-
nature of an electromagnetic mobility edge in a
disordered medium is the anomalous rise in energy
absorption due to localization fluctuations in the
photon diffusivity as the critical frequency ~' is ap-

0
FIG. 1. Behavior of the elastic mean free path as a

function of wavelength. In the long-wavelength
Rayleigh-scattering limit l —

A.". In the short-wavelength
limit, I & a, the correlation length. For a strongly
scattering disordered medium (solid curve) there may
exist a range of wavelengths for which 2m I/A=1, exh. i-

biting weak localization. This would not occur in a dilute
impurity limit (dashed curve).

proached. An illustration with randomly distributed
spheres suggests that this may be observed for a
small range of photon wavelengths comparable to
the correlation length of a sufficiently strongly
disordered medium. The analysis presented is gen-
eral and may be applicable to other systems such as
phonons in a disordered solid. The electromagnetic
case, however, has the advantage that the speed of
light is sufficiently fast compared to the possible
motion of scatterers even at moderate temperatures
so as to present a nearly static disordered medium
on the time scale required for scattering and in-
terference associated with localization.
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