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%e compute numerically the eigenvalues of a family of two-dimensional Hamiltonians
which give rise to regular or chaotic classical motion depending on the particular choice of
parameters. A close relationship is found between the spectral statistics and the fraction of
classical phase space covered by chaotic trajectories. In the extreme regular and chaotic cases
the system displays Poisson and Gaussian-orthogonal-ensemble statistics, respectively. A
one-parameter random-matrix model is proposed to describe the spectral statistics in inter-
mediate situations.

PACS numbers: 05.40.+j, 03.65.Ge

It is by now well understood that most noninte-
grable Hamiltonian systems have regions in phase
space ~here the classical motion is chaotic beside
other regions where the motion is regular. ' This
fact has prompted much activity aimed at under-
standing the quantum mechanical consequences of
chaotic motion and, in particular, the statistical
properties of the eigenvalues of the Hamiltonian.
Probably for technical reasons, most of this
research has been confined to the semiclassical lim-
it. A few specific systems, however, have been
studied in detail quantum mechanically. By extend-
ing the work of Berry, Bohigas, Giannoni, and
Schmit have provided exciting information on the
level statistics of Sinai's billiard. They showed that
the spectrum of Sinai's billiard possesses correlation
properties that are in agreement with those of the
Gaussian orthogonal ensemble of random matrices
(GOE). This has led to the suggestion that, under
conditions yet to be specified, the statistics of ener-
gy levels in finite chaotic systems is universal.

It appears unlikely that the problen of level
statistics can be solved by analytic techniques at
present. Hence, confirmation of the universality
hypothesis must come from numerical diagonaliza-
tion of a wide class of Hamiltonians. Sinai's billiard

has the extreme property of being ergodic, while for
a more general system we expect that only a certain
fraction of phase space participates in the chaotic
motion. In this Letter, we undertake to study the
quantum mechanical spectra of simple Hamiltoni-
ans the classical motion of which undergoes a tran-
sition, as a function of some parameter of the sys-
tem, from completely chaotic to regular behavior.
%e will show that many features of the spectral
statistics can be described in terms of a random-
matrix model. As a subsidiary result we confirm
the universality hypothesis of Bohigas, Giannoni,
and Schmit by demonstrating the validity of GOE
statistics for a strongly chaotic system that is not er-

godlc.
As our object of study we choose a family of

two-dimensional systems which we like to visualize
as two particles moving in one-dimensional poten-
tial wells and interacting through a local potential.
This choice is formally expressed as

0= —,
' (p)'+pp ) + w)(x))

+ F 2(X2) + &12(xl X2)

Given the numerical methods we use (see below),
the problem of obtaining a large number of reliable
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eigenvalues restricts our freedom in choosing the
functional form of V. On the other hand, the
choice of potential is constrained by the require-
ment that the system be sufficiently far from inte-
grable in order to allow for chaotic motion in a wide

energy range. A suitable choice was found to be

K, (x) = V, (o.;x'+ p;x4+ y;x ) .

The numerical values for V;, n;, P;, and y; were
chosen in such a way as to satisfy the aforemen-
tioned requirements and are given in Table I. In ac-
cordance with the same requirements, the system
was quantized withh =0.2.

The eigenvalues of (1) were computed by ex-
panding in a basis of harmonic-oscillator wave func-
tions and diagonalizing the resulting truncated ma-
trix. The stability of this procedure, details of
which will be published elsewhere, was checked by
independent methods. It is very important that, for
the purpose of analyzing spectral correlations, the
uncertainty in the numerical value of each eigen-
value must be small compared to the local mean
spacing. This means that the requirements on nu-
merical accuracy become more stringent with in-

creasing excitation energy even if the level density
is roughly constant as is the case for the present
system.

The statistical quantities we study are the same as
those considered in Ref. 4: (i) the distribution of
nearest-neighbor spacings and (ii) the b, 3 statistic
measuring the long-range correlations of the spec-
trum. Both quantities refer to an unfolded spec-
trum with a local level density fluctuating around
unity. We unfolded the spectrum numerically by
means of a least-squares fit. (The results were
found to be insensitive to the fitting function used. )
In Ref. 4 the spectral information derived from
several Hamiltonians was superimposed to form one
large ensemble in order to reduce the effect of sta-
tistical fluctuations. For the present system, which
represents a many-parameter family of Hamiltoni-
ans with various degrees of stochasticity, it is a
priori difficult to make an unbiased choice of en-

TABLE I. Parameters of the potential defined in Eq.
(2).
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semble and we therefore consider it necessary to
analyze the results for each Hamiltonian separately.
We can, however, improve our statistics by consid-
ering jointly the states with positive and negative
parity. While carrying statistically independent in-
formation, states with different parity in a given en-
ergy region surely possess the same correlation
properties. For the Hamiltonian defined in Eqs. (1)
and (2) with h =0.2, we were able to obtain about
400 reliable eigenvalues for each parity. As the first
25 to 40 levels probe mainly the harmonic part of
the potentials, they are subject to a different level
statistics and had to be discarded. This gave an en-
semble of 720 levels to analyze.

We now turn to the discussion of our results and
consider the chaotic case first. For VI2= 100 we
find almost complete classical chaos in the energy
region occupied by the first 400 levels. The qualifi-
cation "almost" refers to the fact that a few small
islands of stability were discovered and others may
have gone undetected. Nevertheless, we estimate
that more than 95% of phase space is covered by a
single chaotic trajectory. Figure 1(a) displays the
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FIG. 1. Numerical results for the A3 statistic and the
distribution of nearest-neighbor spacings, P(S). Dots
and histograms represent the results obtained for the
Hamiltonian (1) and lines those for a random-matrix
model. (a) through (e) correspond to the order parame-
ters —1.0, —0.8, —0.6, —0.1, and 0.0 in this order.
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results for the distribution of nearest-neighbor spac-
ings and the 53 statistic averaged as in Ref. 4. We
find no statistically significant deviation from GOE
behavior [full line in Fig. 1(a)], thereby supporting
and complementing the results of Ref. 4.

The present system becomes separable, and
therefore integrable, on setting the interaction V&2

equal to zero. It is generally believed that the
eigen values of generic integrable systems obey
Poisson statistics, 5 which implies a Poisson shape
[I' (5) = e ] for the nearest-neighbor spacing dis-
tribution and a linear dependence of b. 3 63(L)
=L/15. As is seen in Fig. 1(e), we find that the
spacings are indeed distributed for V&2= 0 accord-
ing to e although fluctuations around this distri-
bution are noticeably larger than in the interacting
(chaotic) case. The 53 statistic follows the expected
straight-line behavior up to L & 9. The slope is
somewhat too large but this is due to a specific
property of the present Hamiltonian. Other inte-
grable members of the family yield different slopes
close to —,', . However, for L ) 9 the slope is sys-

tematically below the value required by Poisson
statistics. Although further investigation is called
for, we consider this discrepancy as an indication
that the long-range correlations of the present in-
tegrable Hamiltonian are nongeneric. We have
found numerically that the flattening of A3 results
from a particular form of level clustering which can
be generated by folding two independent and weak-
ly anharmonic spectra. Poisson statistics is
recovered by making the anharmonicity sufficiently
strong.

Situations intermediate between complete order
and disorder can be attained by varying V» between
0 and 100. In the long term, our aim is to establish
a one-to-one correspondence between the spectral
statistics and an appropriate classical "order param-
eter. " We can imagine, at least, two quantities that
may play the role of an order parameter: the frac-
tion of phase space filled by chaotic trajectories
and/or the Kolmogorov entropy. Given the sim-
plicity of our system and the present amount of
available data, the relevant order parameter describ-
ing the transition cannot be determined unequivo-
cally. We therefore settle tentatively for the first of
the two possibilities.

We now consider intermediate values of V&2,

V&2=40, 30, and 10. The order parameters for
these systems are 0.8+0.1, 0.6+0.1, and & 0.1.
Results for A3 and the nearest-neighbor spacing dis-
tributions are shown in Figs. 1(b)—1(d). We ob-
serve that for V&2 = 10 the system continues to yield

essentially Poisson statistics (within the limitations
discussed earlier) although the order parameter is
already nonzero. The full lines in Figs. 1(b) and
1(c) are derived from a random-matrix model de-
fined as a GOE with matrix elements M;, modifed
by a cutoff factor exp[ —(i —j)'/o-2]. As the effec-
tive bandwidth o- is varied, this model interpolates
between Poisson (a.= 0) and GOE statistics
(0- ~). Matrices of dimension 160 were used
for this calculation. The bandwidths cr for V&2=40
and 30 were determined as a-=7.5 and 3.5 by fit-
ting the 53 statistic up to L = 6, and we then used
the same values for calculating the nearest-neighbor
spacing distribution. Preliminary calculations indi-
cate that the same qualitative behavior is obtained
for other values of the parameters a;, P;, and y;.
Further examples and a more complete discussion
of the random-matrix model will be given in a later
publication where we will also discuss the validity of
an analytic theory of nearest-neighbor spacing dis-
tributions recently proposed by Berry and Robnik.

In conclusion, by studying a family of simple
Hamiltonians we found that there exists a close re-
lationship between the degree of stochasticity of a
classical system and the spectral statistics of the cor-
responding quantum system. We have proposed a
one-parameter random-matrix model that rep-
resents the numerical data quite well although some
discrepancies, which we ascribe to the nongeneric
nature of our system, remain to be completely un-
derstood. Since the detailed form of the cutoff
should have little influence on the level statistics,
we expect that the present model may describe a
wide range of physical systems.
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