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Cooperative Diffusion Constant of Semidilute Polymer Solutions
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A renormalization-group theoretical result for the concentration dependence of the coop-
erative diffusion constant of semidilute polymer solutions is given. The result satisfactorily
explains the recent experimental result by Wiltzius et al. This is the first application of the
renormalization-group theory to semidilute-solution transport properties.
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Renormalization-group theoretical approaches
have been very successful in explaining the macro-
scopic properties of polymer solutions. ' Howev-

er, there has been no renormalization-group theory
of transport properties of semidilute solutions
where overlap of chains is important. There is even
no renormalization-group theoretic calculation of
the concentration derivative at zero concentration
of transport properties (e.g. , the Huggins coeffi-
cient). The reason is that so far there is no tract-
able method to take into account the hydrodynamic
screening effect which is presumably crucial to
eliminate divergences in the transport coefficients.

In this Letter we show that, within the Kirk-
wood-Riseman scheme, we can straightforwardly
and consistently extend our method for obtaining
transport coefficients for the dilute solution to
the semidilute solution. We calculate the coopera-
tive diffusion constant D„,~ which appears in the
hydrodynamic description of the fluctuation of the
monomer number density field p as

tip/tlt =D„,vb p.

Our lowest-nontrivial-order calculation gives results
in good agreement with the recent experimental
result of Wiltzius et al. '

The cooperative diffusion coefficient can be writ-
ten as"

D„,v
——s (Bsr/Bc )/N,

where m is the osmotic pressure, c is the polymer
number density, % is the degree of polymerization,
and s is the sedimentation coefficient defined by

v=sf
with v being the velocity of the center of mass of a

polymer, and f the external force per monomer.
Since we know the osmotic compressibility,

which is in good agreement with experiments,
we have only to calculate the sedimentation coeffi-
cient. We use the (suitably modified) Kirkwood-
Riseman formalism to this end.

In the Kirkwood approximation, we assume that
the relaxation time of the solvent velocity field is
much faster than that of the polymer conformations
(i.e., the fluid faithfully follows the motion of poly-
mers without delay). Thus we use the stationary
solution to the linearized Navier-Stokes equation in
a closed container,

—sio4u= —Up+ p( r ) f( r ) (4)

where uo is a solution to (4) with f = 0 (the corre-
sponding homogeneous equation) and T is the
Oseen tensor given by

with d being the spatial dimensionality. Notice that
Up is necessary to satisfy the boundary condition.
Let )o be the (bare) friction constant for a mono-
mer. Then, following Kirkwood, we have

p( r ) f ( r ) = (op( r ) [v( r ) —u( r )], (7)

where u is the solvent velocity field, qp is the sol-
vent viscosity, p is the pressure, g( r ) is the mon-
omer-number-density field, and f is the force ex-
erted on the solvent by the monomers. The general
solution to (4) with the incompressibility condition
'7 u=0 is

u(r&=uo(r)+ fd'~ T(r —r'&p(r')f(r'),
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(9)

where ( ) denotes an ensemble average. ' Since the unperturbed flow is zero in our present problem, (9) is
different from the unperturbed flow. With (9) we can solve (8) iteratively to obtain [putting v ( r ) = v],

p(r)f(r)=(vp(r)[[ —(vJT(r —r')Irp(i') rdr]v+'. . . , (10)

where v( r ) is the velocity of the monomer at r . Combining (5) and (7), we get

p( r ) f ( r ) =(vp( r ) [v( r ) —irp( r ) [ —(vp( r )JT( r —r')p( r ') f( r ')d r' (8)

which is essentially the Kirkwood-Riseman equation. However, note that uo is not the unperturbed flow
field (which is zero in our problem) but a mathematical device to satisfy the boundary condition of the sys-
tem under consideration.

In a sedimentation experiment in a closed container, there is no net flow (especially in our case where the
volume fraction of polymers is negligibly small). Therefore on the average u must vanish. Thus from (5)
we can approximately determine uo in the bulk as

irp( r ) = —Jdrr'7( r —r')(p( r') f( r')).

where gp(r ) =p(r ) —po, with po being the aver-
age monomer number density. Now the second
term of (10) is finite due to the subtraction in

8[[)(r). This subtraction comes from (9), i.e.,
from the correct consideration of the boundary con-
dition. From (10) we finally get, using the defini-
tion (3) (note that fp fddr = f fpd r, because
internal forces among polymer elements cancel
each other),

s=(v +pp ([—d ) Jdrr T(r )S(r ), ()1)

where S( r ) = (5p( r )5p(0)), for which we need
the zeroth-order result toget s to order e ( = 4 —d ).

In the above solution, T is the bare Oseen tensor
instead of the screened Oseen tensor. The intro-
duction of the hydrodynamic screening was origi-
nally to remove the divergence in transport coeffi-

cients. However, as we have seen, if we start from
Eq. (4), correct consideration of the boundary con-
dition can remove the unphysical divergence. One
might think that if we consider an infinitely big sys-
tem we need not worry about the boundary. No-
tice, however, that no matter how far away the
boundary is, its effect is decisive; because of the in-
penetrable wall there is no net flow in our present
problem. The arguments by Batchelor' and de
Gennes" are essentially the same as ours, though
they are not as straightforward and explicit as ours.
Also the argument by Yamakawa'5 and by Pyun and
Fixman'6 is analogous (but, note that uo is not
necessarily the mean fluid velocity).

The formula (11) can easily be calculated to or-
der e, and we have the formula for the osmotic
pressure, " so that we get the renormalized result for
the monodisperse system as

= (1+X) ' 1+ 1+— X+-D„,p(0) 1+Z 1 —(1+Z) 8 1+Z 4 1+Z
) 1

ln(1+ X)
X

6 Z 1x exp—41+Z X
1 —1 ln(1+x), (12)

X

where X = [16(1+Z)/(8+9Z) ]cB2, with B2 being the osmotic second virial coefficient, and Z the parame-

ter describing the crossover between the Gaussian and the self-avoiding limit which has been introduced in

the dilute-solution theory. 5'7 From (12) we get

D„,„(c)/D„,(0) = 1+Kc +. . . ,

with
(

Z 3 Z 1

8 1+Z 8 1+Z I —(1+Z)
(13)

D„,~(0)/D„,~(c) =(H/RH, where gH
——6mqD„„(c)/kTand RH is lim, 0$H, is plotted against X and

against Kc in Figs. 1 and 2, respectively, with the experimental results by Wiltzius et al. ' Although not
shown, the recent experimental results by Makita and Nemoto' also agree with the results shown in the fig-
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FIG. l. (H/RH vs X, where RH is the hydrodynamic
radius in the infinite dilute limit, $0 is the effective hy-
drodynamic radius, X is approximately equal to 16B2c/9,
with 82 being the osmotic second virial coefficient, and
M denotes the molecular weight. The numbers beside
the curves denote the value of the crossover parameter
Z; Z = ~ is the self-avoiding limit and Z = 0 is the theta
limit. However, since the theoretical results for the
osmotic pressure for smaller Z are not reliable, the
curves for Z =0.1 and 1 should not be taken seriously.
The broken line is the theoretical result augmented with
the best estimate of exponents at Z = ~ ~ Experimental
results for polystyrene in toluene are taken from Wiltzius
ei al. (Ref. 10). Recent results by Makita and Nemoto
(Ref. 18) are in good agreement with these.

ure. As suggested by Wiltzius et al. , the spread of
experimental data in Fig. 1 is due to the crossover
effect. They suggested in Fig. 2 that there is a
universal curve almost independent of the cross-
over effect. Our result shows that the spread of
curves is greatly reduced for Kc ( 4 (X ( 10), but
there is no universal curve. In any case the agree-
ment of our result without any adjustable parameter
and the experimental result due to Wiltzius et al. '
is satisfactory, especially when we take-into account
that our result is due to the lowest-nontrivial-order
calculation. As is shown in the figures, if we use
the best estimates of exponents, agreement of our
results with experimental results becomes almost
perfect in the high-molecular-weight limit.

One might think that the hydrodynamic screening
of the Oseen tensor is necessary in (11). However,
the physical origin of the screening is the out-of-
phase motion of the solvent and polymers, so that
in the long-wavelength limit, there should not be
any hydrodynamic screening. Thus the formula
(11) is more reasonable than the corresponding for-
mula with the screening. '

In summary, we have extended the Kirkwood-
Riseman scheme to the semidilute regime of poly-
mer solutions. Within this formalism, the lowest-
nontrivial-order renormalized perturbation calcula-
tion of the cooperative diffusion constant success-
fully explains the recent experiments. This implies,

FIG. 2. (H/RH vs Kc [Eq. (13)]. Experimental results
for polystyrene in toluene are taken from Wiltzius et al.
(Ref. 10). Symbols are as in Fig. 1. The numbers beside
the curves denote the value of Z. For Z between 1 and
~, there is almost a universal curve. The broken line is
the theoretical result augmented with the best estimate of
exponents at Z = ~.

along with other results so far obtained, that the
statistical physics of polymer solutions provides one
of the best fields for the quantitative application of
renormalization-group theory.
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