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Hexatic Order and Liquid Density Fluctuations
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We study the evolution of liquid structure factors with changing bond-orientational (hexa-
tic) order. The form of the radial structure factor is found to depend strongly on the mean
square amplitude of fluctuations in the hexatic order parameter. The effects of substrates on
the hexatic ordering process in two dimensions are also examined. Our results apply not only
to hexatic fluids, but also to other liquids whose local densities are coupled to x-y-like pri-
mary order parameters,

PACS numbers: 64.70.—p, 61.30.Gd

Several years ago, Halperin and Nelson proposed
that continuous melting of two-dimensional crystals
occurs in two steps. ' First, at a temperature T
= TM, there is a dislocation unbinding transition
into a hexatic liquid phase, with quasi-long-range
order in the orientations of the bonds between
molecules. Subsequently, at T= T& I, there is a
disclination unbinding transition to an ordinary
liquid phase, without bond-orientational order.

The x-ray scattering technique, which measures
the mean square of the Fourier-transformed liquid
density p-, is sensitive to evolving hexatic order
because of the coupling, first described by Bruins-
ma and Nelson, between p- and the hexatic order
parameter. In this paper, we report on a study of
the density fluctuations in the presence of such
coupling. Beyond the well-known fact that the
scattering pattern for hexatic fluids consists of dif-
fuse spots rather than rings, as for isotropic fluids,
we find that the form of the structure factor,
( Ip-I ), as a function of q =

I q I, changes as the
isotropic to hexatic transition is approached. Furth-
ermore, we show explicitly how, for T near TH

both the mean intermolecular spacing and liquid
correlation length are related to the specific heat.
Finally, we estimate the influence of fields conju-
gate to the hexatic order parameter. The substrates
used in studies of physisorbed gases invariably give
rise to such fields.

The results to be presented below are in excellent
agreement with experiments on both liquid crystals
and xenon adsorbed on graphite. They are also
very general; indeed, they apply to a wide range of
liquids whose local densities are coupled to other,
primary order parameters. If these liquids are well
correlated, measuring the position of a maximum in
the x-ray structure factor can be a convenient

method for determining the specific-heat exponent
o, . Our expressions for the q dependence of the
structure factor are easily modified for arbitrary x-
y-like primary order parameters, including that
describing the biaxial nematic (N') phase. s Thus,
the x-ray scattering technique is a useful tool in the
search for new liquid phases, not only because of
the singular behavior in easily measured parame-
ters, such as the mean interlayer spacing, but also
because of changes in the line shapes that the ex-
istence of such phases would entail.

To perform calculations, it is useful to divide the
fluid into microscopic cells of sidelength Ao
where Ao

' is large compared to the liquid correla-
tion length g. In each of these cells V-„, labeled

by their positions r, we can calculate the Fourier-
transformed density p-(r ) for IqI & Ao. For an

ordinary liquid, the free-energy functional govern-
ing p-( r ) is

dq drp- r (I)
Ap(q

In an x-ray experiment with q = IqI & Ao & g
the cells scatter independently, and the correspond-
ing structure factor is S-=f ddr ( I p-( r ) I )
= T/Aq. If S-„reaches its maximum when q = qa,

Aq can be expanded near q 0 in powers of Sq
=

I qI —qo..

Aq = Ko+ Sq +. . . .

When higher-order terms in hq are ignored, the re-
sulting x-ray scattering profile is a Lorentzian of
width Kp.

In hexatic liquids, the positional correlation
length remains finite, while there is long-range or-
der in the intermolecular bond angles. Consequent-
ly, S- will contain a sixfold modulation as a func-
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tion of 0
q

the angle formed in a particular plane between a reference axis a and the scattering vector q. The
plane in question is defined by the substrates in the gas-monolayer experiments and by the smectic layers in

the liquid-crystal work. In the remainder of this paper, we restrict our attention to those q with vanishing
out-of-plane components. Using the order parameter p-, ( r ), which has an infinite number of components

(indexed by q), we can construct a two-component vector, or equivalently, a complex number, representing
the hexatic order parameter:

~p-„( r ) ~'exp(6iii-, )ddq
qi ( r ) = ~+( r ) ~ex [6i ( r )]= (3)

Note that q is restricted to an annulus in reciprocal space surrounding the first maximum in the in-plane

structure factor. V ( r ) can also be defined as [exp6i 86], where 86 represents the intermolecular bond orien-

tation angles defined (in the smectic or substrate planes) with respect to a, and the square brackets denote an

average over the cell V-„. Near the hexatic-isotropic transition, ( & Ao remains finite and the cell-to-cell

fluctuations in p-( r ) merely follow the fluctuations in W( r ). Thus, the liquid's full free-energy function-

al, which includes terms coupling p-( r ) evaluated for different cells V-„and momenta q, can be replaced

by the effective functional Fuff F», [ P( r )]+Fp[p-( r )]+F@ ~[+( r ), p-( r )] where only Fq, couples

different cells. Indeed, F+ describes an x-y model:

F@= d r —, O''I +r6 W + 4 u6 W +h6++h6 'tII'6 . (4)

A substrate, such as graphite, induces a field h6 conjugate to the order parameter W. For both liquid crystals

and gas monolayers, ordering of other degrees of freedom, such as molecular tilt, also produces nonvan-

ishing effective fields h6. The dimensionality d = 3 for bulk liquid crystals, while d = 2 for thin liquid-

crystal films and gas monolayers.
Equation (3) defines the hexatic order parameter qI ( r ) in terms of p-„( r ). Consequently, the effective

free-energy functional F,ff must include a coupling term

F&
—— „d"q d"r q, + r, cos 6 0-„— r p- r (S)

where f is a real-valued function of three variables. The following expansion off is applicable for T & TH

f (q, )4( r ) ~, cos[6[8-—P( r ) ]I)= 8» ~4( r ) ~cos[6[H- —P( r ) ]) + C» ~W( r ) ~
. (6)

The term C» ~W( r ) ~
accounts for the increased density allowed by sixfold coordination, while the contribu-

tion proportional to 8» favors p-( r ) where q is along one of the hexatic axes determined by p( r ). Thus, f
must display minima where 0- —P( r ) = n2m. /6, and so 8» & 0 for q = qo. Like 2», 8, and C» can be ex-

panded in powers of h~. To include the essential physics of the coupling between 4 and p-, it suffices to

consider only the constant B and the linear term C +2Dh~ in the expansions for B~ and C~, respectively.
Note that D ( 0 because hexatic order favors higher densities, and hence those Fourier components p- of
the density with larger q.

Using the free-energy functional F,ff, we find that

(Ip-, (r)I') =
A» +f (q, ~qj ( r ) ~, cos [6[8-—y( r ) ]])

(7)

which is independent of r by translation invariance. The angular brackets denote a thermal average over the
hexatic degrees of freedom. We perform this average exactly with respect to fluctuations in the phase of
W( r ), and to lowest order with respect to fluctuations in the amplitude ~O( r ) ~. In other words, ~W( r ) ~

is

replaced by its root-mean-square value (~%" I ) 'i . The result is that

S-=W S~ p cos 6pO- cos 6p

where
+ ~/6

S»(p) = dgo
I6 "i6 A +f(q, (~+~2)'i, cos(6y ))
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and X is a q- and (le I
)'/ -independent prefactor proportional to the volume I. . The averages in Eq. (8)

must be computed using the following effective Hamiltonian for the phase variables:

Hri , I=~(T—)Jd rl'7/I —0J cos6&d r/a, (10)

In (10), —7r/6 ~ 1]i( r ) & m/6, Ez (T) is the Franck constant for phase fluctuations, ' a~o is the volume per
molecule, and h6 ——h6(I%'I )' a~o.

For temperatures above T/r /, all terms with p & 0 in the series (8) vanish. Even below, but near TH
where l(cos(6$)) I « 1, the series will converge rapidly because (cos(6p1ti)) = (cos(6$))~ . Using the
expansion (6) for f, and retaining only the first two terms in (8) yields

~
2' —1/2 2 —1/2

Sq 1—1 —— +—cos(68-) (cos(6$)) 1 —1 ——2 b

a a b a
1 )

where a = 2~+ C~(IVI ) and 5 =B~(I%'I2) '/ . If we perform the Fourier transform of S- with respect to
tl- we should recover the hexatic order parameter %' [Eq. (3)]. For small ( I'Ir

I ), our choice for the coup-
ling I', is indeed consistent with the definition of %" if 8~ = —23~.

At lower temperatures, hexatic order will be well developed and I(cos(6pg)) I
= 1 for many values of p,

with the result that the series (8) will converge slowly. However, we can take advantage of the fact that for
T « TH /, the mean square fluctuations (I5$I ) in p are small. Thus, (cos(6p1I/)) =—exp( —18p
x ( I 5$ I ) ), and summing the series (8) yields the spin-wave result,

exp( I e'—/( I5eI')»1]IS-=S-
(2m(I5yl ) )' -" 2~+f(q, (IVI )', cos6(e-„—y))

(12)

where (I5$I ) =(2n) "Tf d"q/(E, q +36h6).
%e now discuss the evolution of S- with T for

h6= 0. At high temperatures (T » TH /), h =B
x (IVI2)'/2 is small and S- assumes the usual

Lorentzian form (xo+5~ ) near qo. Further-2 2-3
more, Sq will be independent of Hq In contrast,
for T & TH I, the structure factor, when measured
as a function of 8-, will display the sixfold mod-

ulation characteristic of hexatic order. For T« TH /, Eq. (12) applies and near the maxima
(at 8- = $„=27m/6) of the structure factor, we can
make the expansion f=fo+ —,

' fo' (8~ —p —1]1„)2. If
fo+ ~o & —,

' fo' ( I5pl ), radial scans through the

maxima will be Lorentzians of half-width
I

~' =~o+ IBI(lq'I')"'+C(lq'I') (14)

Similarly, the inverse intermolecular spacing is, on
average,

qo = qo+ ID I ( lq I ). (15)

Note that if Ko is comparable to B(Iqrl )'/2+C
x (le l ), S- near qo is well approximated by the
square root of a Lorentzian of width K .' Because
(d/dT)(IVI ) = C(T) where C(T) is the specific
heat, there will be singular contributions to qo and

/Al' [(q q
~ )2+ x2 ] 1/2[(q q

i )2+ ~2 ] 1/2

To second order in (lq'I )'/, the inverse lengths
K + are, when squared,

K' = (fo+ K + —, ( I5$ I )fo' ) '/ . Transverse scans
are given by the convolution of a Gaussian with a
Lorentzian; if, again, fo+K & T'fo' (151III )
corresponding angular half-width will be ~'/

( —,'fo')'/2. Consequently, radial and angular half-

widths should have a T-independent ratio for
T « TH I, as is indeed observed near the melt-
ing temperature T~ for xenon on graphite. For
d = 2, 86=0, and T very close to T~, these results
agree with those of Ostlund and Halperin.

The most interesting behavior occurs for T= TH /, where the first term in the expansion (8)
dominates. Using the expansions for A~, 8~, and

C~, we find from Eq. (11) that

(13)

~+ for T near TH i. In particular, where o. is the
exponent and 3+/2 the amplitude ratio charac-
terizing the specific heat, qo (T) qo (TH /) =
—~+ IT —TH /I' and +~ --IT —TH /I' «r—
T & TH I and T & TH I, respectively. Near
TH I, the inverse correlation lengths behave simi-
larly. Note, however, that for T & TH I, any in-
verse radial correlation length ~,rr(T), derived, for
example, from fits of Lorentzians to actual data,
depends on 8-, reaching its minimum for q parallel
to any of the three axes defined by the hexatic or-
der. Since Taylor expansions [based on Eq. (8)] for
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such Keff(T) include terms proportional to
(cos(6p tel) ), tr,«( T) will contain singularities
characterized by the exponents p P (p = 1, 2,
3, . . . ), with corrections of order 7) for p ) 1, as
well as 1 —n. Fortunately, there are considerable
simplifications when a powder average (integral
with respect to tl-) of S- is performed. Upon
averaging, all terms in the series (8) with p A 0
vanish and again Eqs. (13)-(15) define the struc-
ture factor.

We now consider the effects of substrate fields
on the hexatic ordering process. Of course, the
symmetry-breaking field h6 eliminates the hexatic-
isotropic phase transition, much as an applied mag-
netic field destroys second-order ferromagnetic-
paramagnetic transitions. Nonetheless, as for fer-
romagnets, the field h6 can be sufficiently small
that the system wi11 behave nearly as if h6= 0. Our
object here is to make the phrases "sufficiently
small" and "nearly" more precise for the case of
greatest interest, gas monolayers adsorbed on
graphite. For T & TH I and small hs, (cos6$)
= (hs/T)" 4 'o, where 7) =18T/7rE„." Because

for T = T„(c o6s$) will be of order 0.5 or

more as long as ha/T ) (0.5) t4 'o)» 3x 10 5. If
T ) TH r, the linear response result, (cos6$)
=X,h, =(H 'h, /T =(j''h, /T, wtll be ~alid pro-
vided that the hexatic correlation length

gH & (, = (h 6/T) i' . Thus, for xenon on gra-

phite, where h6=0.2 K/atom' and TM =100 K,
substrate effects on the hexatic order will be severe
both above (g, = 30 interatomic spacings) and

below (h s/ T = 10 ) TH

We are very grateful to J. Budai, S. Davey,
J. Goodby, D. Moncton, and R. Pindak both for

fruitful discussions and for sharing their results
with us. It is also a pleasure to thank R. Birgeneau,
D. Fisher, P. Horn, D. Huse, L. Martinez-Miranda,
S. Nagler, and C. Safinya for useful conversations.

'B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41,
121 (1978).

2R. Bruinsma and D. R. Nelson, Phys. Rev. B 23, 402
(1981).

T. F. Rosenbaum, S. E. Nagler, P. M. Horn, and
R. Clarke, Phys. Rev. Lett. 50, 1791 (1983).

4S. C. Davey, J. Budai, R. Pindak, J. W. Goodby, and
D. E. Moncton, preceding Letter [Phys. Rev. Lett. 53,
2129 (1984)].

5G. Grinstein and J. Toner, Phys. Rev. Lett. 51, 2386
{1983);K. C, Chu and W. L. McMillan, Phys. Rev. A 15,
1181 (1977).

S. Ostlund and B. I. Halperin, Phys. Rev. B 23, 335
{1981).

7R. Bruinsma and G. Aeppli, Phys. Rev. Lett. 48, 1625
(1982).

sR. J. Birgeneau and J. Litster, J. Phys. (Paris), Lett.
39, L399 (1978).

9R. Pindak, D. E. Moncton, S. C. Davey, and J. W.
Goodby, Phys. Rev. Lett. 46, 1135 (1981).

OThe form (13) is similar, but not identical to that ob-
tained for a two-dimensional powder-averaged Lorentzi-
an (paL), used, for example, in Ref. 9. The derivation of
the standard form for a paL is based on the unphysical
assumption that the hexatic liquid structure factor, prior
to averaging, is, for 0(q (2qo, the superposition of six
identical, isotropic Lorentzians, centered at q = q„where
I qn I

= qo and 8- = 2rrn/6
qn

t t J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).
J. P. McTague and A. D. Novaco, Phys. Rev. B 19,

5299 (1979).

2136


