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X-ray studies of thick, free-standing films of the liquid-crystal compound n-butyl 4'-n-

hexyloxybiphenyl-4-carboxylate (46OBC) have determined the critical behavior at the three-
dimensional hexatic-B —to-smectic-A phase transition. The position and width of the scatter-
ing peaks exhibited 1 —o. singularities in agreement with theory and heat-capacity results.
Measurements on two-layer films of 46OBC provided evidence for a continuous, two-

dimensional, hexatic-to-liquid transition.

PACS numbers: 64.70.Ew, 61.30—v, 68.60.+q

The layered hexatic-B liquid-crystal phase is the
only three-dimensional (3D) physical system in
which "hexatic" order has been observed. ' This
ordering involves a long-range sixfold symmetric,
orientational alignment of the "bonds" connecting
neighboring in-plane molecules even though their
in-plane positional correlations remain short ranged
and is characterized by a local order parameter
p( r ) = e6'at ' l where 0( r ) is the angle between
the "bonds" and some reference axis. The loss of
bond-orientational order upon heating the hexatic-B
phase results in a layered phase with liquidlike in-

plane order —the smectic-A phase. Heat-capacity
studies4 of the hexatic to smectic-3 (hex-A ) transi-
tion in the liquid-crystal compound 65OBC found
the transition to be continuous with a large, nearly
symmetric heat-capacity peak and critical exponent
o. —0.6. This heat-capacity behavior implies large
hexatic fluctuations which couple to the density
fluctuations, causing sixfold symmetric x-ray scat-
tering with a singular critical temperature depen-
dence for both the position and width of the scatter-
ing peaks. In this Letter we present measurements
of this singular behavior at the 3D hex-3 transition
and evidence for a continuous (2D) hexatic-liquid
transition. The 3D measurements involved thick
films (several hundred molecular layers) while the
2D measurements were on two-layer films. The
films were free standing and thus substrate-free.

The liquid-crystal compound studied was n-butyl
4'-n-hexyloxybiphenyl-4-carboxylate (46OBC). In
comparison to 65OBC, this compound exhibited the
hexatic and smectic-A phases over wider tempera-
ture ranges. Furthermore, the range of stability for
two-layer films was enhanced, and this material

showed no crystalline surface-ordering transition as
observed in 65OBC.' Heat-capacity measurements
on 46OBC indicated that the hex-A transition was
first order, but only weakly so. The heat capacity,
C~, could be fitted by a power-law divergence up to
30 mK of T, . Explicitly C~

—2-+t -+, where
t = ~(T —T, )/T, ~, the upper and lower signs refer
to T ) T, and T ( T„respectively, and the fitted
parameters were A +/A = 0.75 + 0.03 and o. +

= n = 0.49+ 0.02. Unfortunately, 46OBC films
rupture when cooled from the hexatic phase into a
monoclinic crystalline phase, and so the hexatic-
crystal transition could not be studied.

For our structural studies, the layers of the
liquid-crystalline phase were aligned by drawing
free-standing films across a 6&6-mm hole in a
glass cover slide. ' The films were kept at a pressure
of 0.7 Torr in a two-stage oven whose temperature
was regulated to better than 0.01 K. Thick films
were studied using a 50-kW rotating-anode x-ray
source. A vertically bent pyrolytic graphite (002)
crystal was used to monochromate and focus the x
rays to a 2-mm spot. Scattered radiation was
analyzed using a flat pyrolytic graphite (002) crystal.
With the film oriented in a transmission geometry,
the in-plane order was probed by scanning the
momentum transfer parallel to the layers (Q ~~

scans) and by rotating the film about its layer
normal (X scans), as shown in the inset to Fig.
1(a). The resolution parameters were 50~~ =0.05

and b, x = 2' full width at half maximum
(FWHM).

Direct structural confirmation of hexatic order
for a system with short-range positional correlations
is the observation of structure in a X scan. ' Figure
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FIG. 1. (a) 60' X scans in a thick film at temperatures
below, near, and above T, . The inset describes the scan
directions. (b) The amplitude of the intensity modula-
tion in x scans as a function of temperature. 51 = 0 irn-

plies liquidlike order.

1(a) shows the results of such 60' X scans for thick
films of 46OBC confirming the presence of a hexat-
ic phase and showing the evolution in X structure as
the hex-A transition is approached. Figure 1(b)
shows the temperature dependence of the ampli-
tude, 5I, of the intensity modulation in a X scan
which is a measure of the hexatic order parameter,
~(P) ~. When 5I =0, the order is liquidlike. At a
given temperature, SI varied significantly with time
due to a change in the number or size of hexatic
domains within the sample area probed; hence,
measurements of SI could not be used to determine
the critical behavior of ~(P) ~. Nevertheless, the
monotonic decrease of 5I to zero in the smectic-3
phase accurately established T, for the transition
( T, = 67.63 + 0.03 'C). This independent measure-
ment of T, is crucial to extract quantitative infor-
mation from the temperature dependence of the
positional correlations. Typical Qt~ scans near T,
and well away from T, are shown in Fig. 2. The
line shape which has been found to describe scatter-
ing data from various liquids with substantial
bond-orientational order is well approximated by a
square-root Lorentzian (SRL); namely, S(Q~~, T)
= [[Q~~ —Qo(T)] +K (T) } 't', where Qa(T) is
the peak position and a (T) its width. '6 The dashed
lines in Fig. 2 are the result of con voluting
$(gs, T) with the resolution including a linear
background which well approximates the tail of a
small additional scattering peak' at Q~~

——1.32go
[for 46OBC, I(1.32 Q)c/I( Q)o—0.02]. The SRL
structure factor provides a good fit to the data over
the entire temperature range and yields the tem-
perature dependence of Qo and ~ shown, respec-
tively, in Figs. 3 and 4. It is clear that the onset of

.hexatic order ( T, = 67.63 'C) causes a substantial
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FIG. 2. Logarithm of the intensity for g~~ scans in a
thick film at temperatures below, near, and above T, .
Each data point was integrated over 60' in X. The solid
and dashed lines are, respectively, fits to a Lorentzian
and square-root Lorentzian line shape. The in-plane
momentum transfer g~~ is in units of 1.410 A '. I~ is
the peak intensity.

+C, [1+2 '-t' ], (2)

increase in both the in-plane density (Qo) and the
in-plane positional correlations which are propor-
tional to K

Motivated by these measurements, Aeppli and
Bruinsma constructed a theory which takes into ac-
count the coupling of hexatic to density fluctuations
and shows the critical behavior of the hexatic struc-
ture factor. In particular, they explicitly calculate
that unless T )) T, a SRL structure factor should
describe our data. Furthermore, they show that the
critical behavior of Qa and K is determined by the
singular behavior of ( ~trt ~ ), which is proportional
to an integral of the heat capacity. Taking
( ~p~~) = C[1+2 +-t' ], we can write
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FIG. 3. Temperature dependence of the peak position
Qp (in units of 1.410 A ). The lines are fits to Eq. (1).
The inset is the temperature dependence of ~ near T, .
The line in the inset is a fit to Eq. (2).

where C, Kp, C~, and C2 are constants. Note that
the heat-capacity amplitude ratio A+/A and ex-
ponent n appear explicitly. For Qp(T) the solid
line in Fig. 3 is a fit to Eq. (1) with T, fixed to
67.63'C and the amplitude ratio A+/A and ex-
ponent o. fixed to their measured heat-capacity
values. The best-fit values for the parameters
(A+/A =1.3+0.5 and n=0.49+0.04) resulted
in the dashed line. Hence, the temperature depen-
dence of Qo is in good agreement with theory and
heat-capacity results. For a(T) we fitted the mea-
sured values of K within 1.5 K of T, to Eq. (2) with
T„A +/A, and n fixed as above for the solid line.
Again there is good agreement between theory and
experiment. Finally, for T )) T„Aeppli and
Bruinsma show that the structure factor could
evolve into a Lorentzian. In Fig. 2 we show the
results of fitting our data to a Lorentzian (solid
lines). Only for T )) T, does it fit the data as well
as a SRL, showing consistency with a SRL

Lorentzian crossover.
Having determined the 3D hex-2 critical be-

havior of the structure factor in thick films of
46OBC, we next studied hexatic ordering and 2D
critical behavior in two-layer films of 46OBC. Mea-
surements on the two-layer films were carried out
on the wiggler beam line VII-2 at the Stanford Syn-
chrotron Radiation Laboratory. We had previously
succeeded in observing the scattering from a two-
layer crystalline film using an all Si(111) spectrome-
ter. 8 However, the scattering from hexatic order is
broader and the peak intensity correspondingly
weaker (by ) 10 ); therefore, a pair of asymmetri-

FIG. 4. Temperature dependence of K for a thick film
(closed circles) and two-layer films (open circles). The
inset is the log of the intensity for a Qp scan in the hex-
atic phase of a two-layer film taken at the synchrotron.
The solid and dashed lines are respectively fits to a
Lorentzian and square-root Lorentzian line shape.

cally cut Ge(ill) crystals were used in the mono-
chromator and a LiF(200) crystal in the analyzer to
improve signal rates a factor of 20 at the expense of
resolution [b Q~~ =0.004 A ' (FWHM)]. A typical

Q ~~
scan in the two-layer hexatic phase is shown in

the inset to Fig. 4.
Just as for thick films of 46OBC, the two-layer

film Q~~ data could be fitted by a SRL line shape,
yielding a temperature dependence for ~ shown in
Fig. 4. With decreasing temperature K sharply but
continuously decreased from a value ~=0.058 to

0
K —0.0065 A '. Thus, the in-plane positional
correlations evolved from 17 to 160 A. The latter
value is comparable to the correlation length in the
thick-film hexatic phase and is strong evidence for a
liquid-hexatic transition in the two-layer films.
Furthermore, there was no observed thermal hys-
teresis in z, which is consistent with the transition
being second order. In spite of this order-of-
magnitude change in the positional correlations we
did not observe any X structure for the two-layer
films. We expect that this is due to the occurrence
of multiple domains over the area probed (3 && 4
mm ) as well as a 2D enhancement of the hexatic
bond-angle fluctuations whose rms magnitude is
given by 58= [(ksT/27rK& )ln(L/a) ]'i, where Kz
is the bond-angle stiffness constant, L is the sample
size probed, and a is the molecular spacing ( —5
A). Since thermodynamic stability requires K„/
ksT ~ 72/n, the 2D fluctuations can be as large as
58 —19' and thus cause significant broadening.
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Finally, it is also evident that the decrease in K

occurred at a higher temperature in the two-layer
film than that in the thick film. A free-surface-
induced increase in T, has been observed for other
phase transitions in two-layer films and is probably
the reason for the higher-temperature K decrease.
We note, however, that the decrease in K signals a
heat-capacity peak which should occur at a tempera-
ture higher than T, in two dimensions. '

In summary, a complete quantitative characteri-
zation of the critical behavior of the 3D hexatic-
liquid transition has been obtained in 46OBC. Tak-
ing advantage of the variable dimensionality of
liquid-crystal films, measurements were extended
to the 2D limit using two-layer films. The charac-
teristic thick-film hexatic signature of a sharp evo-
lution in K was also clearly evident for two-layer
filmy, confirming the presence of a 2D liquid-
hexatic transition. Since heat-capacity measure-
ments on two-layer films are feasible, the quantita-
tive analysis of the critical behavior demonstrated
for the thick-film measurements should also be
possible in the future for the very important 2D
case.
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