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Low-Temperature Magnetic Aftereffects of Hydrogen Isotopes in
Diluted PdFe Alloys
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In diluted PdFe alloys the motion of hydrogen isotopes in the vicinity of substitutional iron
atoms has been investigated in the temperature range 40 K & T & 1SO K by means of
magnetic-aftereffect and complex-susceptibility measurements. In the temperature ranges
100 K & T & ~ and 60 K & T & 100 K the relaxation rates of all three isotopes obey Ar-
rhenius laws with an inverse isotope effect of the activation enthalpies in the high-
temperature range, and a mixed isotope effect at low temperatures with 0.13 eV for H, 0.12
eV for 0, and 0.16 eV for T.

PACS numbers: 66.30.Jt

The motion of hydrogen isotopes in fcc and bcc
metals in the whole temperature ranges investigat-
ed so far cannot be described by conventional ther-
mally activated processes. ' This is most clearly
demonstrated by the fact that the diffusion coeffi-
cients of H isotopes show distinct isotope effects in
the preexponential factors and in the activation en-
ergies. Previous investigations are mainly con-
cerned with bcc metals because these are character-
ized by large diffusion coefficients (small activation
energies), and therefore the contribution of tunnel-
ing processes to the H diffusion becomes dominant
at higher temperatures than in fcc metals where the
activation energies for H diffusion are a factor of
2-3 larger than in bcc metals.

For a study of isotope effects on the motion of H
isotopes in fcc metals, therefore, measurements at
rather low temperatures should be performed. Pal-
ladium seems to be especially suitable for investiga-
tions of this kind because this metal is characterized
by the lowest activation energy for H diffusion mea-
sured so far for fcc metals. Just recently it was
shown that in the high-temperature range the dif-
fusion coefficients of the H isotopes show the so-
called inverse isotope effect with the smallest activa-
tion enthalpy of H =0.19 eV for tritium and
H =0.23 eV for hydrogen. Measurements of the
activation parameters of H isotopes below room
temperature therefore are highly desirable in order
to study the transition from the high-temperature
range to the low-temperature range where tunneling
processes dominate.

Measurements of hydrogen motion at low tem-
peratures in general are impeded as a result of small

H solubilities and the precipitation of the p phase. s

Furthermore, only those measuring techniques are
useful which allow the measurement of jump fre-
quencies far below 1 s '. As a result of these re-
strictions, many of the classical methods applied for
the study of H diffusion are excluded.

A rather powerful technique for low-temperature
investigations of the hydrogen mobility has been
shown to be the method of magnetic aftereffects
(MAE) 9 '2 For an application of this technique the
material investigated should be ferromagnetic. and
the H atoms should occupy interstitial positions of a
lower point-group symmetry than that of the host
lattice. Under these conditions the H atoms are
characterized by an anisotropic magnetic-interaction
energy depending on the orientation of the sym-
metry axes of the H interstitial with respect to the
direction of the spontaneous magnetization M, .
Within domain walls, where M, rotates from one
magnetic easy direction to another one, the H iso-
topes therefore rearrange by reorienting their sym-
metry axes into positions with the smallest magnet-
ic interaction energy. This process in general is
possible by one atomic jump. The thermodynamics
of this process and the resulting formation of a sta-
bilization potential of the domain wall has been
treated in detail elsewhere. ' '

According to the above-mentioned conditions
palladium is absolutely inadequate to apply the
method of MAE. However, by alloying small
amounts of iron this material becomes ferromag-
netic. A Curie temperature of TC=150 K is ob-
served for Pd95Fe5. According to Fig. l the alloying
element Fe introduces in its neighborhood intersti-
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FIG. 1. Model of a tetragonal Fe-H 1
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FIG. 2. Isothermal magnetic aftereffect curves of

Pd95Fe5T„(x = 0.013).
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fusion coefficient according to D = a /(12r) (a is
the lattice parameter). As a result of the small bind-
ing energies of H to Fe atoms the measured MAE is
mainly due to statistically formed Fe-H pairs.

From a solution of the rate equations for the hop-
ping processes of the H atoms around the Fe atom,
taking into account transitions between nearest-
neighbor interstitial sites and between nearest-
neighbor and next-nearest-neighbor interstitial
sites, under the assumption of zero binding energy,
it is found that the relaxation time of the MAE, 7

is related to r by 7. = (13/12)r„,. Inserting this
result into the equation for D we obtain D
= a2/(137„~). For a comparison of the experimen-
tal results we have represented in Fig. 3 the jurnp
frequencies v= I/r as obtained by other authors
from NMR, permeation, and mechanical-relaxation
experiments in the Pd-H system, together with the
jump frequencies v„&=12/(137„,&) derived from
the MAE of diluted PdFe-H alloys.

From the temperature dependence of v and v„I
shown in Fig. 3 it is tempting to distinguish three
temperature ranges which may be attributed to
characteristic diffusion mechanisms, developed pre-
viously for the diffusion of light particles. '

Region I. ( T ) 100 K)—In this temperature
range, now expanded down to 120 K as a result of
our complex-susceptibility measurements, an Ar-
rhenius law

v = volexp( —H'/kT),

holds for the jump frequency of H atoms. The ac-
tivation enthalphy reveals a significant isotope ef-
fect with activation enthalpy HH = 0.23 eV, HD =
0.21 eV, HT=0. 19 eV for the isotopes, hydrogen,
deuterium, tritium. This inverse isotope effect is
attributed to the different energy levels of the iso-
topes in the ground-state and the saddle-point con-
figurations. As a result of their small atomic mass
the H atoms respond adiabatically to the vibrations
of the host lattice.

For T ~ all three isotopes seem to extrapolate
to the same value of D or v, leading to a preex-
ponential factor of vo=so ' —-1.9x10' s ' which
is comparable to the Debye frequency, vD = 6 x 10'
s '. This value vD has been determined from
vo = kaO&/h with the Debye temperature Oo= 275
K.

Region 1I. (60 K( T(100 K)—In this tem-
perature range the hopping of the H isotopes occurs
predominantly by incoherent, phonon-assisted tun-
neling processes. The activation energy of this pro-
cess corresponds to a lattice activation enthalpy, H„
which is required to produce coincident energy lev-
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els in neighboring potential wells of the originally
self-trapped interstitial atom. In the multiphonon
regime of this temperature range according to Flynn
and Stoneham' the jump frequency for ground-
state transitions is given by

v = (2j.) '(~/H''ksT)'i'~ J-,'„, ~2

x exp[ —H, /ks T], (3)

where J;„,corresponds to the tunneling matrix ele-
ment in the Condon approximation. The lattice ac-
tivation enthalpy H, for the three isotopes are given

FIG. 3. Arrhenius plot of jump frequencies, P„~, of H
isotopes in Pd95Fe5 and of v in Pd as obtained by dif-
ferent measuring techniques. Full circles represent hy-
drogen; open circles, deuterium; open squares, tritium.
The present results below 80 K and around 130 K were
obtained by MAE and complex-susceptibility measure-
ments, respectively. The full line between 50 and 60 K
results from elastic aftereffect measurements (Ref. 22).
The results above 130 K are due to NMR measurements
of the longitudinal spin-lattice relaxation time in
PdH„(x=0.74) (Ref. 22), as well as to permeation and
Gorsky-effect measurements for H and D (Ref. 6), and
to permeation measurements of tritium (Ref. 7).
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by

~a =0.13 eV,

HI' =0.16 eV,

Hll =0 12 eV

tunneling matrix elements between coincident en-
ergy levels in neighboring potential wells.

with average preexponential factors of

vo H=8.3x10 s ', vo'D ——6.25x10 s

vo T=1.0x10 s

If we determine the transition temperature
between the Arrhenius regions I and II we find for
hydrogen Tg =100 K; for deuterium Tg~ =75 K,
and for tritium T&III 65 K. In fact such a behavior
is expected because a larger isotope mass shifts the
dominance of tunneling processes to lower tem-
peratures. Here it should be noted that the activa-
tion enthalpy H, in the Flynn-Stoneham approxi-
mation' should be approximately independent of
the isotope mass. In contrast to this, the experi-
mental results indicate a significant isotope effect
pointing to the fact that tunneling processes
between ground states and excited states are of im-
portance.

Region I1L (T(60 K)—In this temperature
range the falloff of the jump frequencies is further
reduced. According to current theories of light-
particle diffusion' we may suggest that we are
dealing with a transition from the multiphonon
processes to the few-photon ground-state —to-
ground-state tunneling regime. As shown by
Teichler and Seeger ' under certain conditions
one-phonon processes may become dominant in
this low-temperature region.

According to the present results the isotope ef-
fects of the preexponential factors neither in the
high-temperature nor in the low-temperature range
obey a QmH. Qmo. JmT law as suggested for a clas-
sical impurity diffusion mechanism. Instead, the
preexponential factor in the high-temperature range
seems to be related more likely to the Debye fre-
quency of the matrix atoms than to the local vibra-
tion frequencies of H isotopes. At low tempera-
tures the observed small preexponential factors of
10 -10 s ' are proposed to be determined by the
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