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Pattern Selection in Dendritic Solidification
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We show that the dynamically selected velocity and tip radius of dendrites in the
boundary-layer model of solidification have the special values which permit the existence of
steady-state needle-crystal solutions. This result, in conjunction with considerations of sta-
bility, provides new insight concerning the validity of the marginal stability hypothesis.
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Simplified models of dendritic growth recently
have been introduced in an attempt to discover
dynamical mechanisms for pattern selection. ' The
boundary-layer model2 (BLM) is a two-dimensional
model of dendritic solidification in which the
characteristic decay length of the diffusion field is
much smaller than the local radius of curvature of
the interface. In this approximation, valid when the
dimensionless undercooling 5 is close to unity,
thermal diffusion occurs in a thin boundary layer at
the interface; variations in the boundary-layer
thickness account for diffusion perpendicular to the
interface. The BLM has been studied analytically
and numerically in Ref. 2. At a given undercooling
6, crystalline symmetry I, and anisotropy strength
o., a unique dendritelike structure is formed for a
large class of initial conditions (after the decay of
initial transients). The dendrite consists of a
smooth, almost parabolic tip which extends for
about five tip radii before forming side branches.
The tip propagates without noticeable change of
shape, while the side branches appear to be generat-
ed periodically and to grow out at fixed positions in
the laboratory frame, in a manner consistent with
experimental observation.

From its beginning, the BLM has produced in-
teresting surprises. For example, the continuous
family of steady-state shape-preserving needle crys-
tals, which was assumed to exist on the basis of ap-
proximate analyses of the full solidification prob-
lem, does not exist in the BLM except in the mani-
festly unstable Ivantsov limit of vanishing surface
tension. Rather, for any set of growth parameters
5, n, etc. , the BLM has only one or at most a
discrete set of needle-crystal solutions, each associ-
ated with its own growth velocity vp and tip curva-
ture Kp. Dendrites, with their complex time-
dependent side-branching structures, are far from
being needle crystals; therefore it might seem un-
likely that the dynamical selection mechanism is
closely tied to the existence of special stationary

solutions which remain needlelike infinitely far
behind the tip. The principal result to be reported
here is that the tip of the dynamically selected den-
dritic mode in the BLM turns out to have precisely
the same vp and Kp as the needle crystal. We shall
see that this fact is crucial to an understanding of
the dynamics of dendritic pattern selection. In par-
ticular, it leads us to a tentative explanation for the
success of the marginal stability hypothesis in
predicting experimental data.

The mathematical statement of the two-
dimensional BLM consists of two coupled nonlinear
partial differential equations for the curvature K and
the thermal field h, as functions of the displacement
s along the solidification front and of the time t.'
We define 8(s) to be the angle of orientation of the
front, so that ~=d0/ds. Then the BLM equations
are
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where the normal velocity of the interface is
v„= w2/h, the scaled interface temperature is
w =1—5 K —pv„, and the anisotropy function is
p=uk (1 —cosm8). We require reflection sym-
metry about the tip at 0 = 0, so that the first deriva-
tives of h, K, ~, and v„vanish there. In the tail of
the dendrite, we have also imposed the condition
that these first derivatives vanish. In our numerical
solutions of (1) we have used a sufficiently long in-
terface that side branches from the tip do not yet
propagate to the boundary in the tail during the
computation.

The steady-state version of (1) can be written in
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the following form:

d 8/ds = 5 '(1 —w —pvp cos8) = ~,

dw/ds = X,
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Here we have used the fact that (lb) admits a first
integral which satisfies the boundary conditions,
namely, that v„= vp cosH, where vp is the velocity of
the tip. In order to analyze (2) in detail we consider
the phase space of H, w, and A. . The only important
fixed points are at X = w = 0, 8= + 7r/2; the tip is
not a fixed point. A steady-state needle-crystal
solution of the BLM corresponds to a trajectory in
the phase space which joins the two fixed points and
passes through the line H = X = 0. Only those trajec-
tories which do intersect this line satisfy the boun-
dary conditions that we have imposed at the tip; and
there is no a priori reason for this intersection to oc-
cur for any arbitrary value of vp. There is only a
single trajectory which enters or leaves the fixed
points, just as we reported earlier for the BLM in
the limit of small 6 and 0. =0. This trajectory is
asymptotically identical to the Ivantsov solution:

K vp(1 —5) cos 0, 8 + m/2. (3)

In order to compute these needle-crystal solutions
explicitly, we have integrated (2) backwards in s
from 8= m/2, using (3) to identify initial values of
H, w, and A. as close as is numerically feasible to that
fixed point. We then have looked for values of vp

for which the trajectory reaches H =0 at some
w = wp, i.e., K = Kp, with A. = 0. For example, for
the parameter values o. =0.1, m =4, and 4=0.75,
we have found two eigenvalues of vp', one at

vp = v p
= 0.2712 with Kp = Kp = 0.0915 which has ex-

actly the shape of the dynamically selected dendrite
tip, and another at vp=0. 0206 with Kp=0.0207
which is a slow, flat-tipped solution of no obvious
physical significance. Both vp and Kp are within
0.1% of the values obtained by numerical solution
of the fully time-dependent Eqs. (1).

To understand the significance of this result, note
first that the needle crystal, which we shall denote
by ~"(s), is a functional fixed point of the dynami-
cal system (1). We shall assume that the fully
time-dependent solution of (1) is approaching a

functional limit cycle, to be denoted by ~'(s, t)
The shapes of both theoretical and experimental
dendrites seem to repeat themselves with a well de-
fined period when observed in a frame of reference
moving with the tip. We cannot prove that our
computed ~(s, t) in the BLM will not diverge or
otherwise lose periodicity at some large but finite
time, nor can we discount the possibility that late-
stage coarsening of side branches occurs (in real
dendrites or the BLM) via a weak instability of the
motion. But the limit cycle appears to be a good
working hypothesis for the moment.

Our numerical results tell us that the limit cycle
K (s, t) coexists in the dynamical function space
with the fixed point ~'(s) and, moreover, that
K'(s, t) and K'(s) are close to each other in the
sense that they are numerically indistinguishable
near the tip of the dendrite. We suggest, that the
simplest way to view this situation is as if K'(s, t)
has emerged through a single Hopf bifurcation from
K (s). That is, ~"(s, t) and ~"(s) both lie on an in-
variant two-dimensional manifold with ~'(s) un-
stable only against perturbations in that manifold.
Alternatives to this picture seem improbable. If
K (s) were completely stable, it would be likely to
appear as an attractor in the dynamical simulations;
but we do not seem to see needle crystals without
side branches. If ~'(s) were unstable against more
than one complex-conjugate pair of deformation
modes, then points initially near ~'(s) would not
flow reliably toward a unique limit cycle. In neither
case could we understand how the properties of
K (s, t) are accurately determined by the needle
crystal ~'(s). Note that, if x"(s) must have exactly
one conjugate pair of unstable modes, then we al-
ready have arrived at a weak form of a marginal sta-
bility principle. If the modes are part of a continu-
ous spectrum, then x"(s) must be marginally un-
stable; that is, dynamic trajectories must diverge
from K" (s) algebraically rather than exponential''y.
Alternatively, the modes can belong to a discrete
part of the spectrum. Both of the latter possibilities
imply that the selected state of dendritic growth is
one in which the tip is characterized by a specially
weak instability. The first possibility is consistent
with the sharp statement that the needle crystal as-
sociated with dendritic motion is marginally un-
stable. We conjecture that this is the case.

As a first step towards testing the above-pictured
crystal, we have linearized (1) about the stationary
solution K'(s) and have studied the eigenvalue
spectrum of the resulting operator both analytically
and numerically. Details of these investigations will
be presented elsewhere, but the crucial result can
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be understood from qualitative considerations. The
needle crystal has the special property that the ther-
mal field h diverges like s'~ as 8 + 7r/2,
s + ~. In the BLM, this means that all defor-
mation modes which propagate down the dendrite
(as observed in the moving frame of the tip) can
neither grow nor decay in a linear theory. [For ex-
ample, in the planar stability spectrum reported in
Eq. (4.6) of Ref. 2, t0 vanishes for all q in the limit
of large l't and vanishing normal velocity. ] It turns
out that the extended states that constitute the con-
tinuous part of the dendritic deformation spectrum
have the asymptotic form exp [iqs + tu(q) r ] as
s + ~ with c0(q) = —iqvo. Thus, all of these
modes become stationary in the laboratory frame
when observed at positions far from the tip. A
similar phenomenon was observed by Muller-
Krumbhaar and Langer in their numerical studies
of linear stability in the full diffusion problem; the
spectrum seemed to flatten out at Re~=0 near
q =0. The slowing of all modes rather than just
those of long wavelength as h ~ is an exaggerat-
ed feature of the BLM. Our conclusion is that, in
both the BLM and the full diffusion problem, any
exact needle-crystal solution can be no more stable
than marginally stable, and the mode (or modes)
with Reco=0 must lie in a continuous part of the
stability spectrum.

The remaining portion of the spectrum must con-
sist of modes which are localized near the tip of the
dendrite. Our numerical simulations of the dynam-
ical system (I) plus preliminary results of a numeri-
cal stability analysis lead us to believe that these
modes either merge with the continuum at Recu = 0
or become stable with Redo ( 0 for sufficiently large
anisotropy strength o. . Because of the intrinsic mar-
ginal stability of the needle crystal, we conjecture
that dendritic behavior occurs in both the BLM and
the full diffusion problem throughout some
nonzero range of values of o. .

It is useful to compare the properties of the BLM
with those of the related geometric model (GM) in-
troduced by Brower et al. ' and analyzed most re-
cently by Kessler, Koplik, and Levine. Pattern
selection in the GM also turns out to be tied to the
existence of special needle-crystal solutions but, be-
cause there is no analog of the thermal field, these
solutions become completely stable at sufficiently
strong anisotropy. Persistent side branching seems
to occur only at a critical anisotropy where the nee-
dle crystal is marginally unstable; for larger anisot-
ropy the side-branching modes are transients. It is
possible that a similar stabilization occurs in the
BLM, but our numerical evidence plus the special

stability features of the BLM make this seem un-
likely. As applied to solidification problems, the
GM can now be seen to correspond to the limit of
interface control, whereas the BLM is primarily a
model of diffusion control. Apparently, dendritic
behavior is generic only in the latter case.

We conclude with some remarks concerning the
status of the marginal stability hypothesis. The way
in which this hypothesis has been used in the
analysis of experimental situations ' ' seems to be
correct but not optimal. Note that the statement of
a marginal stability criterion suggested by our new
results is different from previous statements in an
important way: The stability requirement pertains
to the needle-crystal fixed point and not to the den-
dritic limit cycle. This is a weakening of the hy-
pothesis in the sense that it no longer says anything
about dynamical behavior not associated with a
fixed point. In another sense, however, the state-
ment is surprisingly strong because marginal stabili-
ty is simultaneously a criterion for the existence of
a dendritic limit cycle and a property of the needle
crystal. In practical terms, this means that if one
has a family of approximate needle-crystal solutions,
then it is reasonable to select one member of this
family by testing for marginal stability, which is ex-
actly what has been done previously. On the other
hand, the optimal procedure would be to find exact
needle crystals and use stability as a consistency re-
quirement.
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