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Growth of Order in a System with Continuous Symmetry
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The growth of order in a system with continuous symmetry is studied in the time-de-
pendent Ginzburg-Landau model (in the large-X limit), quenched below the coexistence
curve. The dynamics are studied with and without conservation of the order parameter. The
development of order in the longitudinal direction and the buildup of Nambu-Goldstone
modes in the transverse directions are explicitly exhibited. Nontrivial scaling behavior and
growth laws are obtained in the long-time regime.

PACS numbers: 64.60.Cn, 64.60.My

In this paper we discuss the growth kinetics of a
time-dependent Ginzburg-Landau model in the
large-W limit which has been subjected to a rapid
temperature quench' from very high temperatures
to a temperature below the coexistence curve. We
discuss the cases of both a conserved and a noncon-
served order parameter. Our results are the first
example of an essentially exactly solvable model
which shows nontrivial scaling behavior and growth
laws for the development of order. It is also the
first treatment of any kind of the growth of
Nambu-Goldstone modes in systems growing order
while globally maintaining a continuous symmetry.

The model that we treated is well known in the
study of critical dynamics and is referred to as
models 3 and B by Hohenberg and Halperin. We
have a vector order parameter p;(x, t) with N com-
ponents. The equilibrium behavior of the system is
governed by the Landau-Ginzburg-Wilson free en-

ergy

F= — dxr + V' + —H
2 2X

where H; = Hh;, is an external field. The dynamics
of the field P; are governed by the Langevin equa-

tion

(2)By; (x, r )/Br = —I &+/5&; + q;,

where I is a kinetic coefficient. In the case where
the order parameter is nonconserved (NCOP) I is a
constant, while for the conserved order parameter
(COP) the Fourier transform of the operator I'( x )
is Dq2 with wave number q. The noise in (2), as
usual, is Gaussianly distributed such that (7i;) =0
and

(g, (x, t ) v), (x', t'))

=2r(x)B(x- x')5(r —r')B,, (3)
We are interested in the case where the system is

initially in an equilibrium state characterized by the
"temperature" rq and the field HI. At some time
to= 0 one rapidly changes r and H to a set of final
values rz and Hz. The main quantities of interest
are the average magnetization

m, (r) = (y, (x,r)), (4)

and the structure factor C(q, t) which is the Fourier
transform of

C, (x —x', r) = (By, (x,r)sy;(x', r)), (5)

where 5$, (x, t) = p; (x, t) —m;(t). The graphical
structure associated with this model is well
known and it follows along standard lines that in
the large-X limit we have the equations

BM (r)/Br = —I (0) [AM;(t) —h; + uM (r) [M'(r) +S(r) ]],

where M, (t) = m; (t)/ JN, h; = H;/QN,

(, (r) = —rr —u [M'(r) +S (r) ] —2u B, ,M'(r),

S(r) = fa'q (2~)-'C, (q, r),

and

BC, (q, r)/Br = —2I'(q) [q' —(, (r)]C;(q,r)+21 (q).

(6)

In the presence of the external field, or if the system is initially ordered, i labels the longitudinal direction,
i =z, and the (N —1) transverse directions, i = z. We consider the case where rl is very large so that
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C; ( q, 0) = S (0) = 0. We have defined (; such that
with rF large and negative, $; is large and positive
initially. For sufficiently small q we see that the
system will be initially unstable since (; is positive.
The system will respond to this instability by grow-
ing into the new equilibrium state.

While one can, of course, study the most general
case (Ht, rt) (HF, rr) we have chosen to focus in

this paper on two particular situations which we be-
lieve offer the most interesting results. The first
case is a quench in zero field of a NCOP. In this
case Ht =HF ——0 and one sees that M(t) =0, and
there is no symmetry breaking. This situation is in-

teresting because the system will still build order
over arbitrarily large length scales and, as we shall

see, develop Nambu-Goldstone modes. In the
second case we consider a COP where we have a
finite magnetization M; = Mh;, initially. Consider
dropping the temperature and adjusting Hz such
that the average magnetization is fixed at the value

f

M (analogous to holding the number of particles
fixed in a lattice-gas model). As one approaches
the coexistence curve Hz goes to zero. We look at
the case where rJ; takes one below the coexistence
curve and HF =0.

Case L—In this case M = 0, I (q) = I', and there
is no distinction between longitudinal and
transverse modes, C; = C ( q, t) . We must solve
Eqs. (7)-(9). We have done this numerically for
d=3 and the primary result is physically trans-
parent. The point is that for small q, C(q, t) will

begin to grow. Therefore, S will increase and
(= ~rF (

—uS(t) will decrease, lowering the thresh-
old of the unstable modes. We find that S (t), after
an initial fast transient, slowly approaches the sat-
uration value (rr ~/u. In this regime ((t) approaches
zero as t '. Therefore, the system minimally re-
stores its stability as t ~ ~. We then find, for
times t & 10, that the structure factor is given very
accurately by

C (q, t ) = (I —exp[ —2I (q) q2t ])q + AL (t)F (qL (t) ), (10)

where, even though I (t) = 0, the coefficient A rap-
idly evolves in time to the value, A =MF = ~rr~/
u —S„where Mz is the magnitude of the spontane-
ous magnetization associated with the final equili-
brium state (rF,HF ——0) and S, =Jd q (2m) q

In order to explain the significance of Eq. (10) let
us recall that the critical point of the model is given
by r, = —uS, and S, gives an upper bound on the
equilibrium order-parameter fluctuations in the ab-
sence of symmetry breaking. Since we are quench-
ing the system well below the critical point (~rF ~)) ~r, ~) and S(t) rapidly approaches the satura-
tion value ~rF ~/u, the system, after the initial fast
transient, must simultaneously satisfy the conflict-
ing needs of reaching stability and maintaining S (t)» S, without breaking the global symmetry. The
way out is a gradual local symmetry breaking
through the formation of domains, which generate
a central peak in the structure factor and correspond
to the second term on the right-hand side of Eq.
(10). The inverse of the width of this peak is a
length L (t) associated with a typical domain size.
We find that L (t) —t't2 for long times in agree-
ment with the Lifshitz-Cahn-Allen curvature-
driven growth law developed for scalar order
parameters. Thus the growth law appears to be in-
dependent of N, the number of components of the
order parameter, in the NCOP case. We also find
scaling behavior9 of the type described in detail
elsewhere. The shape function, shown in Fig. 1, is
Gaussian F(x) = exp( —ax2) for x & 4 with
a =ln2, and it is found to be independent of time

and temperature. As t ~ the scaling term in Eq.
(10) goes over to a Bragg peak indicating symmetry
breaking over domains of arbitrarily large size.
Consequently, one can expect the appearance of
Nambu-Goldstone modes —q . This is described
by the first term on the right-hand side of Eq. (10).
The physical picture seems clear from an analysis of
the q = 0 component of the structure factor,
C(0,t)=t+423 7t, wh. ere the t32 term corre-
sponds to the setting up of domains of the new
phases and the linear term corresponds to the
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FIG. 1. Normalized shape functions defined in Eq.
(10) for NCOP and COP.
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development of Nambu-Goldstone modes within
these domains.

Case Il.—In this case I'(q) = Dq, I (0) = 0, and

M; (t) = M8, , is time independent and (6) is a trivi-
al identity. In this case, for M & 0, we must solve
(9) for Ci(q, t) together with (7) for (i = irFi —u
x [Ml +S(t)] and (8). The longitudinal com-
ponent C, (q, t) is then given by (9) once
(, (t) = jj (t) —2uM is known. Again, the impor-
tant result of the analysis is that (i —r 'i for long
times and we find that Cj is given again by (10)
but with several important differences. First, in the
Nambu-Goldstone component, one has 2Dq4t in
the exponent and this piece has the characteristic
peaked structure seen in spinodal decomposition.
The peak height and position of this contribution
are given by PNG ——2.01t' and qN&=0. 6t
The peak position of the "Bragg peak" contribution
is given by q (t) =l. '= I 7t ti4. for long times
(in contrast with the Lifshitz-Slyozov result r 'i )
and the peak height by P (r) = 104 Ot'i, . where the
amplitudes of the power laws are for rF ———10. In
this case we find that 2 = irI; i/iu

—M2 —S,
=M~ —M and the shape function is shown in Fig.
1. For x & 2 the shape function is well approximat-
ed by the form (a+bx ) ', where a = —1.3&&104

and b =6.1x10 in agreement with the speculation
of Furukawa' in the scalar-order-parameter case.
The longitudinal component simply equilibrates to
the final form

C, (q, ~) = (q2+2uM')

Thus only the transverse component develops a new

Bragg peak. This makes physical sense. Because of
the conservation law and the initial ordering the
longitudinal magnetization does not change after
the quench. Thus if one adds up the magnetization
in the z direction one only finds domains ordered as
in the initial state. On the other hand, the equation
of state in the final state must be satisfied, rF + uS,
+uMF =0 with M~ )M . This is achieved by
developing ordering in the perpendicular directions,
where domains in all the transverse directions will

order, giving contributions to a Bragg peak just as in
case I. If we look at the Bragg peak contributions to
the total magnetization squared we have a contribu-
tion M from C, and Mz —M from Ci and, as ex-
pected, the sum is MF.

We point out that our formulation here is formal-
ly very similar to the work of Langer, Bar-on, and
Miller" (LBM) where they solve equations very
similar to (10) for the case of a scalar order parame-
ter. Binder, Billotet, and Mirold'2 pointed out that
the LBM model led to an unphysical q behavior

in the structure factor. We see here, where our
model involves no approximations, that this q re-
flects the growth of Nambu-Goldstone modes. It
seems then that the LBM model is not appropriate
for systems with a scalar order parameter.

Our results here are somewhat different from
those found recently' for the COP kinetic Ising
model. A logarithmic long-time growth law was ob-
tained there with use of Monte Carlo and renor-
malization-group methods. This logarithmic behav-
ior was a manifestation of a freezing behavior for
quenches to zero temperature. We expect no such
freezing in the model that we study here (which has
very-low-energy gapless excitations) and conclude
that the long-time growth laws may therefore be
substantially different for the two systems.

The relevance of our work to the physical cases
of N = 2 and 3 seems clear in the NCOP case where
the growth law for L (t) is the same as found in the
Ising N=1 case. We speculate, therefore, that
L(t) —t' for all N. The COP case is less clear
since even the growth law for N =1 for the time-
dependent Ginzburg-Landau model is not yet
known. Our results cannot be extrapolated directly
to two dimensions for the obvious reason that there
is no phase transition at finite temperatures for
N &2.
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