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Associated with the local Lorentz symmetry of gravitational interactions of fermions there
are chiral anomalies in (4n+2)-dimensional space-times. We present chiral Lorentz
anomalies in two and six dimensions. Existence of chiral Lorentz anomalies implies that
quantum effects induce a breakdown of local Lorentz symmetry in 4n+ 2 dimensions, in
general, in theories containing chiral %eyl fermions.
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Associated with internal gauge symmetries, there are the well-known axial-vector anomalies. ' Fermions
interacting with gravitational field have two symmetry properties: (i) general covariance; (ii) local Lorentz
invariance. Are there "axial" anomalies associated with these gravitational symmetries? Alvarez-Gaume
and Witten have recently analyzed the question with respect to general coordinate transformations and
shown the existence of anomalies in 4n+ 2 dimensions. We have, on the other hand, looked at the anomaly
question with respect to local Lorentz symmetry, which is the closest gravitational counterpart5 of the usual
non-Abelian gauge symmetries. Anomalies also exist, again in 4n+2 dimensions. In this note, we report
our results for the case of spin- —,

' fermions.
Let us consider a massless Dirac spinor in an even W-dimensional Riemannian background of a classical

gravitational field. The action is of the form

W=Jt d 'x(dete, ") ,' (Qiy'e, "D—„Q QD„iy—'e,"P), (l)

where

t 4 trabto p ~ Dp = t) p, + t 4 trabto

and co'b„ is the Lorentz connection, a known function of e,~. It is invariant under local Lorentz transforma-
tions with m' „serving as the corresponding gauge connection, and under the general coordinate transforma-
tions. Associated with these invariances are two separate conservation laws. The conservation equation im-
plied by local Lorentz invariance is ~

Sab" „+(t,b .—tb ) =0,

where

S, "= e'"y(~, y,—+y, ~, )y,

tab=eb tat =el 2~ (4'yaDt 4 0 ADt. tyaA)

The one that follows from general covariance is

?"„.„——
2t ~"„(T,b Tb, ) =0, —

where

1T"„=e'"e „Tabs ~ab ~ah+ 2 Sab 'p, .

(2)

(6)

We shall in this note concentrate on anomalies associated with the local Lorentz invariance. The chiral coun-
terpart of the conservation equation (2) is

(5)S p + [(5)t (s)t ] () (7)
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where S,b" and t,& are obtained by inserting the Hermitian matrix

I(N 2)/2yoy 1 yN 15= I

in front of p in (3) and (4). Equations (2) and (7) are conservation laws at the classical level. Quantum ef-
fects may modify these equations, giving rise to "anomalies. " These Lorentz anomalies can be calculated by
using the same techniques previously developed for axial-vector anomalies. We use two different methods
of calculation. One is based on the Schwinger-DeWitt proper-time method coupled with the generalized (-
function regularization procedure, and the other on the path-integral measured ~ la Fujikawa. As expect-
ed, there is no modification of (2) in any dimension. However, (7) is modified in 4n+2 dimensions. That
there are no anomalies in 4n dimensions is a consequence of the charge-conjugation properties of the theory.

The chiral Lorentz anomaly can be conveniently expressed in terms of DeWitt s proper-time expansion
coefficients a)vi2(x). When the anomalous term due to quantum effects is included, the equation (7) is
modified to become'0

' Sob"";I + [' t,b "tb ] —=i (47r) 'Tr(r, (r,bali, ). (9)

To calculate the trace in (9), we only need terms with (N 2)/2 o—r more powers of a.,d's in aNi2. Even so,
the algebra is quite tedious when Nis large. For N= 2, the result is relatively simple: a&(x) = » R, where R
is the scalar curvature, giving rise to (to) = t&0= 1)

(s)S,bi'.„+[(5)t,b
—(5)

tb, J = —is,b(247r) 'R (N = 2).

For N = 4, one has'

Tr(yscr, baz) = —, (Rg'""R—b,„„Rb'""R„—„„),

(10)

where R,b&„= 2
~ b,dR &„, with Eo(23= —1. The right-hand side of (11) is identically zero, as expected from

the general considerations mentioned above.
For N = 6, the algebra starts to be quite involved. The result is the following

(5)S y, + [(5)r (5)i ] (5)N

where (& = &0)23gs = 1)

N = i '(47r ) e— [ —'RR' ""R'—+ 'R""R' R—'f" + 'R"""~R'—d R'f
ab 8 abcdef 80 36 Ap v 72 p,v

+ 'R"""(R'd R—'f —'(R' .~R—'f"". +4R' """R'f . ).45 pv Af 60 pv; pav;A,

(Rcd k + Rcd x Rcd x)Refgu]

(12)

(12')

We have so far considered theories with Dirac spinors, for which the axial-type quantities S,&~, t,b,
etc. , do not really appear in the Lagrangian (1), and the anomalies are, though interesting, not particularly
significant. However, for a chiral Weyl spinor, with a definite chirality, the implication is significant. Con-
sider a massless left-handed Weyl spinor P„ interacting with gravitational field, with the action denoted by
WL. The responses of O'L with respect to local Lorentz transformation (LLT) and general coordinate
transformation (GCT) are, respectively,

5~LLT~ WL= d x detea~ 25m x " Sag;~+ ~ab
— t~, (13)

ll' = —Jtd x(de«.")["'& —~" '"'T 1~x" (14)

where the expressions ' 'S,„",etc. , are obtained from the corresponding expressions (3), (4), and (6) by re-
placing p with PL. Gravitational chiral anomalies, like

4, + [(")r —(")r ] = (L)N (1S)

then imply a breakdown of the corresponding gravitational symmetries as a result of quantum corrections.
The precise form of the Lorentz anomalies N, b for spin- —,

' chiral fermions can be deduced from an

22



VOLUME 53, NUMBER 1 PHYSICAL REVIEW LETTERS 2 JULY 1984

extension of the considerations leading to (9). For
N=4n+2, they are given by

r

«)x.b=;~(4~) ~/2Tr
1 —I5

presented elsewhere.
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I (5)N (16)

(L) p ab (L) T (L) gpy p, ab

which, on account of (17), can be written as

(18)

p & ab (L)~ (L)g (19)

The chiral Lorentz anomaly N, & thus contributes
to the general-coordinate anomaly (~) g„.

(iii) The presence of the two gravitational
anomalies places severe constraints on chiral gravi-
tational theories in 4n+2 dimensions. Presum-
ably, both kinds of anomalies should get cancelled.
It remains to be seen how such restraints are put to
use to select models.

(iv) The Lorentz anomalies, except for %=2,
depend on derivatives of the curvature tensor, and,
consequently, on the intricate dynamics of the grav-
itational field. The dependence on derivatives
probably also makes it harder to uncover the
geometrical meaning of the Lorentz anomalies.
This is a new feature of the Lorentz anomaly that is
different from the usual chiral anomalies.

Details and other related discussions will be

For %= 2 and 6, (s)iV,
b is given by (10) and (12'),

respectively.
We close with a few remarks:
(i) According to (6) and (15),

(17)

The quantum corrections therefore induce in 4n + 2
dimensions a nonvanishing antisymmetric part of
the energy-momentum tensor T~„, which is actually
equal to the Lorentz anomaly. It is to be noted that
it is the symmetric part" of T~„ that is the source of
gravitational field g„„in the Einstein equation.

(ii) In 4n+ 2 dimensions, there are two kinds of
gravitational chiral anomalies, associated with the
two gravitational symmetries. The anomaly associ-
ated with the general coordinate transformation4 is
of the general form
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