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Kinetic Model of Stage Transformation and Intercalation in Graphite
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We derive a set of diffusion equations based on time-dependent Landau-Ginzburg theory,
which is capable of describing the role of domains in stage transformations and intercalation
in layered materials. As illustrations of the formalism we study stage decomposition in a
quenched sample and the intercalation of a dilute sample. Staggered domains of intermedi-
ate stages are shown to arise naturally as a consequence of the interactions and the kinetic
constraints even for a sample without dislocations. Further, we show that intercalation
proceeds through the formation and migration of islands of intermediate stages.

PACS numbers: 61.60.+m, 64.60.My, 64.70.Kb

The important role of domains in the physics of
graphite intercalation compounds' has been under-
scored in recent experimental and theoretical work.
The domain model of Daumas and Herold2 (DH)
assumes that in a staged sample (stage n refers to a
periodic sequence of intercalant layers separated by
n carbon layers) the areal density of intercalants is
the same for every carbon layer (averaged over the
whole sample) so that there are staggered domains
of pure stage material. The DH model has been in-
voked to explain qualitatively the mechanism of
stage transformations, 4 stage disorder, and other
processes. 6 7

In the description of all the above phenomena the
existence of intercalant domains is taken for grant-
ed, and equilibrium thermodynamics is used.
While various models " for the phase diagram of
the homogeneous system have been constructed,
no related theory of the kinetics of stage transfor-
mation and intercalation involving the inhomogene-

ous DH structures exists. The purpose of the
present paper is to point out that apart from the for-
mation of domains by nucleation of dislocations'
the interactions responsible for staging and the
kinetic constraints appropriate to lamellar structure
lead naturally to an intrinsic tendency to form DH
structures. The fact that the various staging-related
phenomena are observed in single crystal as well as
highly oriented pyrolytic graphite suggests that this
intrinsic effect might also play a significant role in
the physics of intercalation. Our approach is based
on the theory of spinodal decomposition' ' con-
sidered in this context first by Safran'5 to study the
dynamics of domain growth.

We start with a mean-field lattice-gas model of
staging as proposed by Safran. Consider a system
of N carbon layers stacked along the z axis. Let
o

& (x,y) be the coarse-grained intercalant density on
the jth layer normalized to unity for close-packed
density. The total Helmholtz free energy of the
system may be written as

dxdy Ez+ 2K +xyo j + 0 jVij(7i

The first term is the free-energy density of a single layer which we take to be

Fj = ——,
'

User~ + kaT[o J Ino J+ (1 —ai)ln(1 —o, ) ]+ytrj/(p. + tr, ). (2)

The first two terms in Eq. (2) are common to
equilibrium models and the third contribution is
an elastic energy due to the separation of the
layers. '

The second term in Eq. (1) is the energy-gradient
term. ' '4 It expresses the fact that it costs the sys-
tem energy to introduce density inhomogeneities
along the basal planes; K determines the interface
energy and the size of the islands. The third term
in Eq. (1) is the interlayer repulsion'6 which we
take to be of the form V» = Vo/~i —j~ as has been
done in most equilibrium studies. ~" Note that
long-range elastic forces which -an play an impor-

tant role in island formation' have also been left
out for simplicity.

The phase diagram for the homogeneous system
is obtained in the standard way. " All our kinetic
studies reported here will be with reference to the
equilibrium phase diagrams calculated in this
manner for the parameters Vp/ Ua =0.3, y/ Ua
=1.05, and P=0.5. Estimates for Ua for inter-
calated graphite are of the order of 0.25 eV. ' The
resulting phase diagram (k&T/Uo versus overall in-
tercalant concentration Wt) showing stages 1, 2, 3,
and fractional stage —', (periodic array of stacks of
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FIG. 1. The equilibrium phase diagram for the free-
energy model under consideration. NI is the overall in-
tercalant concentration. The kinetics of the processes in-
dicated by the dashed lines AB and CD are considered as
illustrations here.

three carbon layers, with two of them filled) is
displayed in Fig. 1 for future reference.

We first study mass-conserving stage transforma-
tions such as the quenching process indicated by the
dashed line AB in Fig. 1. Note that mass-con-
serving stage transformations by varying hydrostatic
pressure have been studied experimentally. ' To
describe such processes we assume that the inter-
calant density on every layer is conserved. This is
reasonable since in a perfect crystalline sample dif-
fusion across the graphite layers is highly improb-
able in light of the relative ion sizes. The inter-
calant flux on the i th layer is linearly related to the
thermodynamic force, i.e., the gradient of the local
chemical potential':

(3)

where p, ; = 5F/So;and F -is given in Eq. (1), and M
is the mobility (assumed constant). Since the layer
occupancy is conserved, we have the equation of
continuity'

80 t/Bf = —Vxy ' J ).

Equations (1)—(4) describe the time evolution of
the system for mass-conserving processes. These
coupled, nonlinear diffusion equations constitute
our kinetic model. We will show below that they
can be adopted for describing the intercalation pro-

cess as well under some simplifying assumptions.
We now apply the above model to study the

kinetics of the stage decomposition resulting from
the quench represented by the dashed line AB in
Fig. 1. Our initial configuration corresponds to that
of high-temperature stage 1, i.e., a uniform occu-
pancy of o.0=0.225 on every layer, which corre-
sponds to the equilibrium configuration for this
concentration at T( = ka T/ Up) = 1.1. The system
is quenched to temperature T=0.7 for which a
stage-3 configuration (in-plane occupancies of
0.625, 0.025, and 0.025 on successive layers) is the
equilibrium configuration if the system is homo-
geneous. A linear stability analysis' with respect to
basal-plane sinusoidal density fluctuations with z-

axis periodicities 1, 2, and 3 shows that the fastest
growing instability is of periodicity 2, i.e., that of
stage-2 type. This would imply that a sample
quenched directly from high-temperature stage 1 to
the region of stability of stage 3 must pass through
an intermediate phase with stage-2 domains. The
linear stability analysis yields the critical (Cahn-
Hilliard) '3 wave vectors at which the fastest growing
mode of instability occurs (stage-2 type) to be—0.35vr/QK. For the temperatures under con-
sideration here the value of Jx should be of the or-
der of —20 A, so that the decomposition wave-
length is of the order of 120 A. The initial growth
rate is of the order of ~/MUp which we estimate
(from the reported diffusion rates p) to be of the
order of 10 s.

As a first step in studying the full effect of the
nonlinearity of the diffusion equations we have in-
tegrated them for a system of six layers with the
concentration assumed to be independent of the y
direction. This forces the decomposition to occur
through striped domains rather than dropets as in a
real system. Because of the in-plane isotropy the
qualitative aspects of the early stage decomposition
are unaffected by this restriction (e.g. , the linear
stability analysis still yields stage 2 as the fastest
growing mode again), but the late stage-coarsening
kinetics in the real system will be much slower.
The integration is performed by making the layers
discrete along the x direction, where we have
chosen 24 points with a lattice constant equal to JK
( —20 A) with periodic boundary conditions in the
x and z directions. We have verified that with our
choice of lattice spacing and chain length the
decomposition wavelength agrees well with the
Cahn-Hilliard value.

The result for the quenching process AB is shown
in Fig. 2(a). Density profiles for the six layers are
shown at t = 10 and t = 200 (measured in units of
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FIG. 2. Density profiles for the quenching process for
the six layers at various times. Distance is measured in

units of QK ( —20 A) and times in units of K/MUD

( —10 6 s). (a) The approach to the stage-2 DH station-
ary (metastable) configuration. (b) The approach to the
stage-3 DH configuration.

x/MUo, which is of the order of 10 s s for the
parameters here). The initial uniform stage-1 con-
figuration is unstable so that any arbitrarily small
perturbation of any kind will lead to the stage-2
mode as predicted by linear stability analysis and
verified explicitly here. The next process to be ex-
pected is the growth of stage-2 domains to reduce
interfacial energy, followed by rediffusion to form
stage-3 DH domains. However, we find that the
configuration shown for t = 200 in Fig. 2(a) is a sta-
tionary solution stable against small perturbations,
and thus represents a metastable state for the sys-
tem. From the similarity of the stability analyses
for the stripe and the droplet cases we believe that
this behavior will be true for the two-dimensional
simulation as well. If our equations contained a sto-
chastic force term (representing interaction with a
thermal bath) the stable stage-3 structure would be
reached eventually. The same effect can be illus-
trated by suppressing the growth of stage-2 fluctua-
tions as shown in Fig. 2(b). Here, the t = 200 con-
figuration corresponds to one obtained by a three-
layer simulation and repeated. Starting with this

FIG. 3. Density profiles for the intercalation process
for the six layers at various times (distance and time
units same as in Fig. 2). (a) Formation of stage-2 is-

lands. (b) Formation of stage-3 and stage- —', configura-

tions.

configuration, the six-layer simulation yields the
stage-3 DH structure shown at t=400 which has
lower free energy (as verified explicitly). Thus, the
passage of the system from the high-temperature
phase to the low-temperature phase occurs through
intermediate stages, which may persist for long
times.

Turning now to the intercalation process itself,
we consider the simplest possible model of the
graphite-vapor interface. Some of these simplifica-
tions can be relaxed at the cost of additional compu-
tational effort. We will neglect the effect of the
sample edges on the interactions, the effect of the
finite thickness, and the effect of the c face. The
sample is in contact with the vapor on the planes
x = + L so that the intercalation front is uniform in
the y direction. We assume the intercalation to
proceed isothermally. Then, the difference in the
chemical potential of the intercalant in the graphite
matrix and that in the vapor phase drives the inter-
calation or the deintercalation process until equilib-
rium is reached. From our simplifying assumptions
the evolution equations are unchanged, except for
the points on the planes x = + L. At these points
the incoming flux is determined by the difference
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between the local chemical potential and the
vapor-phase chemical potential.

As an illustration of the scheme we consider the
intercalation process indicated by the dashed line
CD in the phase diagram of Fig. 1. This corre-
sponds to the passage of the sample from a very di-

lute stage-1 configuration (in-plane occupancy of
—0.033) at T=0.7 and p, =0.3SU& to a dense
stage-1 configuration at the same temperature and

p, = 1.0Uo (in-plane occupancy of 0.7SS) with mass
uptake. We have integrated the diffusion equations
for a system of six layers with periodic boundary
conditions in the z direction with a length along the
x axis of 72/x (with JK —20 A. as before) and as-

suming symmetry with respect to +x. If the start-

ing configuration is completely homogeneous, the
intercalation front would also be homogeneous,
though unstable. Introducing small inhomo-
geneities at the interface then leads to the breaking

up of the intercalation front. The results for two

separate runs are shown in Fig. 3. In Fig. 3(a),
where the initial inhomogeneity was a small excess
on the first layer at the interface, the configuration
at t=200 shows a sample which has attained the
high-density stage-1 configuration at the edges,
while in the bulk of the sample the intercalant pro-
pagates through stage-2 staggered islands. In Fig.
3(b), where the initial inhomogeneity was a stage-3
nucleus at the interface, the intercalation front
breaks up into stage-3 and stage- —,'regions. The
rate of intercalation found here is compatible with
observed rates. Our simulation results support the
view~' that intercalation proceeds through the
growth of domains correlated along the c direction
due to the repulsive interplane interaction.

In conclusion, we have extended the equilibrium
models of intercalation compounds to study time-
dependent, kinetic processes. We show that the
models predict spinodal-type instabilities which
should be observable in carefully controlled quench
experiments. In our illustrative examples the oc-
currence of Daumas-Herold domains is indicated.
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