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The three-dimensional (& 2)3

theory is studied at large N. A complete mapping of the

phase diagram and a detailed analysis of the renormalization-group flows is given. The re-
cently found uv fixed point of Bardeen, Moshe, and Bander is investigated and it is pointed
out that its characteristics seem to be somewhat nongeneric and might disappear at finite N.
Our analysis is restricted to infinite N and hence no definitive conclusions are yet possible.
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This work presents a study of scalar O(N)-
symmetric quantum field theories in three Euclide-
an dimensions in the large-N limit. For finite N,
with a given renormalization-group (RG) transfor-
mation we expect the following picture to hold!: In
the space of all interactions there is a hierarchy of
isolated fixed points (FP), each located on the
boundary of the domain of attraction of its prede-
cessor. The most stable FP is noncritical (TFP) and
corresponds to a theory with an infinitely massive
particle. The most stable critical FP has one un-
stable direction and governs the critical behavior of
the O(N) Heisenberg mode (HFP). The Gaussian
FP (GFP) has two unstable directions (and a mar-
ginally stable one) and controls the tricritical
behavior of the O(N) model. Different kinds of
continuum field theories are associated with the
various trajectories connecting the FP’s. The
theory constructed on the trajectory leading from
the HFP to the TFP has only a scale as an adjustable
parameter. It is complicated at high energy but
qualitatively simple at low energy.? The two-
dimensional unstable surface emanating from the
GFP gives rise to a two-parameter family of
theories. The control over the uv regime (given by
the GFP) allows the perturbative construction of
these superrenormalizable (® 2)3 models.

At infinite N the marginally stable direction at
the GFP becomes absolutely marginal and a line

expl— Vo)1= (4im) = [ a1 [ R expl— Vo(X) + 1M 2K - &),

of fixed points appears, corresponding to N =oco
scale-invariant (@ 2)3 theories. Recently Bardeen,
Moshe, and Bander (BMB) have claimed, on the
basis of a variational calculation, that this line ends
at a new, nontrivial uv attractive FP, at which scale
invariance is spontaneously broken, with the ap-
pearance of a dilaton.®> It was implied that this new
FP survives to finite N so that a (® ?)3} continuum
theory with three adjustable parameters and a non-
perturbative high-energy behavior exists at finite .
The BMB FP supersedes the uv FP suggested by
Townsend,* Pisarski,* and Appelquist and Heinz*
on the basis of large-N perturbation theory.

In this paper we intend to exhibit explicitly the
RG flows at N = o in the neighborhood of the line
of GFP’s. For this purpose we shall first compute
the effective potential by Euclidean functional
methods and identify the various FP’s by picking an
(assumed generic) three-dimensional surface of
bare interactions. On this surface we shall map out
completely the phase diagram. The bare action is

A5(81= [14(8,8)2+ Vo(§)]a’x,
(1)
Vo(@2) = 3 ud® 2+ 3 0o(B D)2 + g mo (P 2)°.

The 1/N expansion is obtained when we represent
the interaction term as an inverse Laplace
transform,

¢))

and perform the Gaussian oy integration. The N dependence then becomes explicit, and, at leading order in
1/N, one is left with a saddle-point problem in the composite fields M? and X. The effective potential
Veff(5 2) is obtained when we add a space-independent source term and perform the standard Legendre
transform. The variational method employed by BMB gives equivalent results at infinite N, but we feel that
our approach is more standard and that its correctness at N = co is more transparent.
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We work with a sharp momentum cutoff A and
rescale all the fields and the potential in order to
work with dimensionless quantities:

é=(AN)"V2d, X=(AN)"'X,
(3)
M2=A"2M2 V(&) =NAUy(4?).

Similar rescalings define ac and U ( 53) Uptoa

constant, the N = oo effective potential is given by

Ueff( $c2)

) X
- 2 J::onstg

M?=g(X) (4b)

where the function g is defined in 10,1/2#2] as the

(dt +Uy($ 2+ X), (4a)

=2U§ (4 2+X),

inverse of f:
dq 1

= 2y <4 -
XSO =fy oy rar

If there are many solutions to (4b) the relevant one is the absolute minimum of (4a). The vacuum corre-
sponds to the minimum of Uy given by the equation M2<i>C =0 with two solutions: The O(N)-symmetric
one has d)c =0 and M? > 0, while in the broken phase we get d)c # 0 and M?=0. For the vacuum we ex-
tend the definition of g (x) to x > 1/ 272, where it is taken to vanish. Extrema of the effective potential cor-
respond now to solutions X of g (X) = 2U0 (X), and the corresponding value of Uy is glven by the integral
of Uy —1/2g from 0 to X. If X < 1/2#? we are in the symmetric phase and if X > 1/272 we are in the bro-

=Qa?) 11— |M|tan™1(1/|M])]. (5)

ken phase. This algebra can be conveniently represented grapically.
It is convenient to shift the field X to Xz =X — f(0) and define ‘‘renormalized’’ couplings:

Ur (2 =Ug($2+1/202) = Ug(1/20) = 5 up & 2+ +rp (6 D)2+

The phase diagram we obtain in the dimensionless
parameters ,u,% , Ar, and ng is schematically depict-
ed in Fig. 1. The surface labeled by H is the
second-order Heisenberg critical surface and it is at-
tracted to the HFP. It separates between the sym-
metric phase (at the right of H) and the broken
phase. The surface X is the first-order transition
surface. For 0<<mnz <m.=(47)% X and H are
separated by a line ¢ of tricritical points which are
pointwise attracted to the line of GFP. For ngz > n,
the surface X continues into a surface X' up to a
line / of second-order phase transitions which meet
t at the BMB end point P. The surface X' does not
correspond to a breaking of the O(N) symmetry but
to a discontinuty in M? and (¢ 2). The line / corre-
sponds to the critical point of a liquid-gas transi-
tion.

It is now a trivial matter to compute the correla-
tion length é=M"! of the field ¢ as a function of
the “‘bare temperature’ ud. The correlation critical
indices are v=1 on the Heisenberg surface H,
v=+ on the tricritical line ¢, and v=+ at the end
point P. The index associated with the specific
heat, «, has the value % at P. This supports the
view that the end point is very special (in particular
hyperscaling is violated). These properties are
clearly a result of the fact that the two lines ¢ and /
intersected at P. In particular the massless BMB di-
laton is the massless excitation associated with the
critical line /.

We now set up the RG analysis. Even at N =0

2072
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r
the RG transformation cannot be handled exactly.

We shall use a truncation to the space of actions of
the form (1) with an arbitrary potential V (® 2).
We define the transformation Rg on the space of
functions ¥ by imposing the requirement that a
change in the cutoff, A — A/S, if accompanied by
the changes ® — ®g and V — Vs =Rs(V), leaves

AR

ordered disordered

FIG. 1. The phase diagram for d =3 and N = co.



VOLUME 53, NUMBER 22

PHYSICAL REVIEW LETTERS

26 NOVEMBER 1984

the effective potential unaltered:

Verr(D LA, V) = Ve (D 2A/S, V). @)
In order to keep the, kinetic energy unchanged we
have to pick ®3=®. Since at N =oo the critical

exponent n is zero in perturbation theory our ap-
proximation is not implausible. In order to con-

struct a finite continuum field theory we have to J

Us(62) =SS ¢ 2+ ((2/SVHUL($ ) =S~ QU D)),

which is identical to the result of Ma.’ Introducing
the inverse function of 2Ug, Fg (which is defined at
least locally), we get

Fs()—r()=SIF(y/S?) —f(y/SH)]. (9)

The fixed points are obviously F*(y) =c-/y + £ (),
where ¢ is an arbitrary parameter. As long as
—oo < ¢ < 0 the function F*(y) is invertible to an
analytic function U*(¢ 2). This line of FP corre-
sponds to the tricritical line. ¢ = — oo corresponds
to U =0, and therefore to the GFP. The end
point ¢ =0 corresponds to the BMB FP. For ¢ > 0,
F*(y) cannot be inverted into an analytic potential,
except for ¢=1/4w, where U* becomes analytic
and monotonic. This is the N = HFP.

If we start with a theory in the unbroken phase
we see from (4b) that there exists a 6, =0 such
that F(b;)=/f(b;). This property is preserved by
the RG transformation Rg. In the vicinity of b; we
can invert the function G = F — f:

G U(x)=b;+ 2b,x"" 1. (10)

2

From (9) we see that Gy '(x)=S2G “(x/S)
and we obtain the critical exponents y,=3-—
n=1,2,..., associated with the nonlinear scaling
fields b,.” The parametrization in terms of the b, is
appropriate for a large class of potentials, including
the tricritical line. The y, are the Gaussian ex-
ponents. b; is in fact the square of the mass M and

JDIpIDIQ16(A 2~ exp!

where W*(p?) is now analytic at p?=0. The p field
[(¢ 2)Y2] has become a canonical field. Since N is
1r_1f1mte the integration over the radial components
Q) can be done and one obtains an effective poten-
tial for the field p which is completely flat in the
range 0=<p < pn.=1/(27?)Y2. Scale invariance
can be spontaneously broken; p is the dilaton dis-
covered by BMB and may take any expectation val-
ue between 0 (where M?2= o) and p,.c (Where M?
=0 and scale invariance is restored). Different

proceed as follows: Pick A =S Ag with Ay arbitrary
but finite and find a potential Vs such that the
limit of Rg(Vy,s) exists as S — oo within the space
of acceptable interactions. Thus the cutoff depen-
dence is removed without giving up the explicit uv
finiteness of the cutoff theory. The RG equation
simplifies when we deal with the derivative of the
rescaled potential U’ (¢ 2): From (4a) we get

(®)

[

—N [14p2(8,0)2+ £ (3,0)*+ W* (p) 1d’x ),

therefore has to have an exponent y;=2. The re-
gion of interaction space which includes the HFP is
best parametrized by the Taylor-series coefficients
of the function F(y). From (9) we obtain the criti-
cal exponents of the spherical model, y, =3—2n,
n=1,2,.... Our two parametrizations overlap and
hence RG flows can be followed everywhere.

We now focus on the end point of the line of tri-
critical FP, ¢ =0. This point is on the boundary of
allowed interactions. Indeed, if we start with a po-
tential of the form (6) with g > m., u3 =Ag =0,
the interaction is rendered nonanalytic by the appli-
cation of Rg and flows outside the allowed space of
interaction for sufficiently large S. (At infinite N,
even one step in the recursion involves averaging
over an infinite number of degrees of freedom and
might include a nonanalyticity.) When ¢ =0, the
scaling field ; depends nonanalytically on the bare
parameter [,L(2) and is not quite adequate: It is by this
mechanism (nonanalyticity of the scaling fields)
that the exponents become peculiar at the end point
and in particular v # 1/y;. The fixed-point poten-
tial U* itself becomes nonanalytic (and therefore
outside the realm of Feynman diagrams) for ¢ =0,
and develops a logarithmic attractive divergence at
¢> 2—0. This is acceptable only because the loga-
rithm is exactly canceled by the centrifugal repul-
sion resulting from the integration measure. If we
write ¢ = pQ with O 2=1, the functional integral
corresponding to the fixed pomt becomes

(1)

{

continuum theories correspond to these different
cases.

The picture of what is happening at infinite N is
now quite complete. For finite but large N the tri-
critical line ¢ and the Ising line / should survive but
the generic situation is that they do not meet. This
would mean that the existence of the special end
point P is an artifact of the large-N limit in three
dimensions. That the lines ¢ and / do not have to
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meet for some topological reason can be seen at in-
finite N in 3+¢€ (e > 0) dimensions where the tri-
critical line is attracted to the GFP and its end point
is by no means special. It is plausible that the situa-
tion is similar in d = 3 for any finite N. If this is so,
there is no reason to believe that a ‘‘nontrivial”
(52)3 theory exists for finite N. To be sure, our
analysis does not rule out the possible occurrence of
a nontrivial uv FP at finite N and its relationship to
the BMB phenomenon. The computation of 1/N
corrections might encounter difficulties due to the
nonanalyticity at leading order. To establish the
phase diagram via Monte Carlo simulations should
be relatively straightforward and probably much
easier than to investigate numerically the continu-
um limit directly.
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