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Two-Series Approach to Partial Differential Approximants:
Three-Dimensional Ising Models
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A two-series approach to partial differential approximant analysis of power series is
presented. Instead of double series, f (x,y) = gcjx'yt, our approach uses two one-variable
series in x, f and Bf/By, and has the efficiency and stability of one-variable methods. 21-
term high-temperature series are analyzed for the susceptibility and correlation length
squared for double-Gaussian Ising models on the bcc lattice. Critical exponents are
y = 1.2378(6), 2v = 1.2623 (6), and rt = 0.0375(5); correction-to-scaling exponents are
8„=0.52(3) and S 2

——0.49(4); and the subdominant critical amplitude ratio is

at/a„= 0.83(5).

PACS numbers: 05.50.+q, 02.60.+y, 75.10Hk

Partial differential approximants (PDA's) have
proved valuable as a method of series analysis in
critical phenomena. ' This approach permits the
direct computation of critical exponents and con-
fluent singularities in singular thermodynamic func-
tions of two variables. In addition the scaling func-
tion, critical amplitudes, analytic factors, and back-
ground terms can be obtained. For a general dis-
cussion see the review by Fisher and Chen, 2 and
references therein.

The standard PDA method is designed explicitly
for the analysis of double power series,

f(x,y) = $ct~x'yt (i «N, j «N'), (1)

where N' is typically O(N). For definiteness, we
shall consider x to be a high-temperature variable
(x= J/kT, where J is the Ising nearest-neighbor
coupling constant, kis Boltzmann's constant, and T
is the temperature) and y to be some irrelevant
variable. Briefly, a partial differential approximant
to f is a function Fist, tvr, t/tvr, l which satisfie. s a Par-

tial differential equation of the form

Pt B„F+P2 BvF +PpF = PL

Bf(xy) y cn y n ( N)
By „ p By

(4)

The leading Nterms in fand Bf/By are considered
to be known functions of y which need not be poly-
nomials. The label M& for any function P; in Eq.

(where the operator B„ is either B/Bx or x B/Bx)
and which reproduces the known terms in the series
expansion of f. The quantities P, = XPt&(y)x' and
Pt = XPt&(y) x' are polynomials specified by the la-
bels M& and L, respectively. The method of Fisher
based on double series has the advantage that all
the known series information is used in construct-
ing approximants. A drawback is that the method is
computationally time consuming for large N, typi-
cally involving the inversion of NN' x NN' matrices
[i.e. , O((NN') 3) time steps].

In this paper we present an alternative approach
to PDA analysis based, instead of Eq. (1), on two
single-variable power series,

f(x,y) = $ c„(y)x" (n «N) (3)
n=0

and
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(2) now represents an integer specifying the degree
of P; as a polynomial in x. Also, the polynomial
coefficients, P;,, are not assumed to be polynomials
in y, and can be more general functions of y. Given
a set of integers defining a given PDA of this type,
[Mt, M2', L/Mp], one can construct the polynomial
coefficients P;, and PIJ by matrix inversion of a set
of linear equations. For the operator B„=x|l/Bx,
these linear equations take the form

X([(Pp +P; (n j)]a—„,+P2J ll a —J )

0 =P „, (0~n (iV), (5)
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normalized with P10 =1. At a fixed value of y, one
obtains a PDA along a vertical cut, rather than over
the x-y plane. The procedure is then repeated at
discrete points in the y direction to map out the ap-
proximant more completely. This method repre-
sents a substantial simplification over the conven-
tional approach in that the size of the matrices that
must be solved are only of order XxX, which
reduces inversion time requirements by a factor of
order N'. Thus the method has the simplicity of
one-variable methods such as the Pade approxi-
mant3 and (ordinary) differential approximants
(DA's). ' An advantage of PDA's over the ordi-

nary differential approximants is the ability to
analyze the full scaling function. A DA can analyze
only the leading correction-to-scaling term and ana-

lytic corrections. Our investigation indicates that
the two-series method also has substantially greater
ability than does the conventional PDA method and
gives results comparable to or better than the best
single-variable approaches.

As an initial application we have analyzed Nick-
el's 21-term high-temperature series for X and g'/x
for the double-Gaussian Ising model on the bcc lat-

tice. Here X is the magnetic susceptibility and

g =M2/X is the second-moment definition of the
correlation-length-squared series. These models
are continuous-spin nearest-neighbor Ising models
with a spin-weight factor consisting of two identical
Gaussians of width co=(1 —y)'t at +y. Chen,
Fisher, and Nickel' only studied X with the PDA
approach. Since we have analyzed two series with a
common scaling behavior, we can also investigate
critical amplitude ratios.

We now briefly outline the procedure used to ob-
tain exponents and amplitudes from these approxi-
mants. Once an approximant has been calculated
by the solution of Eq. (5), the analysis proceeds by
determination of the leading positive zeros of the
polynomials Pt and P2 and the fixed point (or mul-

ticritical point), (x',y'), which is a common zero of

both polynomials. Next one determines the matrix
of partial derivatives aj BJ(P;/Pp), ij =1,2 at
(x",y"). The derivatives with respect to y must be
calculated numerically. Here it is convenient to use
the vector notation x = (x,y) = (xt,x2). Diagonal-
izing the 2&2 matrix a~~, i.e., solving the eigen-
value problem, $,a;, e,k. =X„e;k, then yields the
critical exponents y = (A.t) ', where Xt is the larg-
est positive eigenvalue of a;, , and 8 = —X2/A. t. The
eigenvectors e;, define the linearized scaling fields
appearing in the scaling solution of Eq. (5),
X = Xp+gt «f(g2/gte), i.e. ,

11 612 gl

,y -y', ~21 +22 g2,
(6)

.,=(g, F) 'l (g,"F)/t (g2gt')- (8)

For our estimates of aF, the differences in Eq. (8)
were evaluated over an interval of Ax=10 at
fixed y =y' and x =0.8x'. At this value the series
representation of fis accurate to approximately 1%.

Our results for the analysis of X are shown in Fig.
1(a), and those for g2 are shown in Fig. 1(b). The
homogeneous approximants used were close to
diagonal, typically M; =6 +2. There were few
well-behaved near-diagonal inhomogeneous approxi-
mants, none for I. ~1. We also investigated biased
approximants in which a zero at —x, (y) was im-

posed on Pi, this gives rise to an antiferromagnetic
fixed point near ( —x',y'). Such biasing has little
effect on the results for homogeneous approxi-
mants [Figs. 1(a) and 1(b)] and permits one to con-
struct many additional approximants. In contrast to

In our work, the fixed point was located by a
Newton-Raphson scheme accurate to within 10
convergence was typically achieved within 10 itera-
tions. The partial derivatives with respect to y were
calculated by means of a symmetrical, equal-spacing
four-point formula with a grid size of Ay =10

The critical amplitudes and scaling function can
be obtained by integration of a given partial dif-
ferential approximant along a characteristic, i.e.,
trajectory parametrized by a scalar t. Along this
path dx; /dt = —a;, ( x (t) ) and F( x (t) ) = F ( x (0) )
xe'. If the trajectory is sufficiently close to the
fixed point, one may simply approximate the func-
tion in terms of the linearized scaling fields as

F = Fp +gt «Ar(1 + apg2gt ),
~here I'0 is a background term which is present
only for inhomogeneous approximants (L ~0).
Thus for homogeneous approximants the subdom-
inant amplitude a~ is given by
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FIG. l. (a) Susceptibility exponent, y, and (b) cor-
relation-length-squared exponent, 2v, vs correction-to-
scaling exponent, 8. Homogeneous PDA's are denoted
by squares (unbiased) and lozenges (biased); circles
denote biased L =0 approximants. Centroids and stand-
ard deviations are indicated for each type of approximant,

Ref. 1, we did not find that Euler-invariant approxi-
mants were special.

Figures 2(a) and 2(b) show the distribution of
our approximants with respect to a&'=(1 —y')'~2.
They show the strong linear correlation of the lead-
ing exponent with the location of the fixed pint co'.

We obtain yx =0.866(12) and y&&
——0.876(6). The

overall distribution is thus significantly smaller than
that of Chen, Fisher, and Nickel, ' y„' =0.87(4).
The errors quoted in the present paper refer to 1

standard deviation over the distribution of all ap-
proximants within a window of +3 standard devia-
tions of the centroid; thus we ignored several spuri-
ous approximants outside this window. If we re-
stricted the results to quartiles of the distribution of
our approximants, in the manner used in Ref. 1,
our quoted errors would be even smaller.

FIG. 2. (a) Susceptibility exponent, y, and (b) cor-
relation-length-squared exponents, 2v, vs fixed point es-
timate, co'. Homogeneous PDA's are denoted by squares
(unbiased) and lozenges (biased); circles denote biased
L =0 approximants.

A summary of the results for the critical expo-
nents obtained from these approximants is given in
Table I, together with a representative sample of
results for the 21-term series by other methods of
analysis and for the field-theoretic perturbation ap-
proach. . Results for the correction-to-scaling ex-
ponent 8 are slightly though not significantly dif-
ferent. Since the correlation of X and g Os y' is
similar, we obtain an estimate for r)—=2 —y/v of
0.0375 (5) .

Finally we have estimated the amplitude ratios
at/a„using Eq. (6). We find that the result is well
correlated with y' and yields 0.83(5), somewhat
higher than that from the field-theoretic series re-
sults (see Table I).

In conclusion, we have developed an alternative
to the conventional PDA analysis method for the
analysis of singular functions of two variables. The
method has several advantages, including the com-
putational efficiency and simplicity of one-variable
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TABLE I. Critical exponents and amplitude ratios for 21-term double-Gaussian and Ising-model susceptibility and
correlation-length-squared series with use of partial differential approximants (PDA), ordinary differential approxi-
mants (DA), ratio analysis (RA), Pade-Roskies transformation (PR), and field-theoretic analysis (FT).

Analysis

PDA

PDA
DA
PR
RA
FT
FT
FT

1.2378 (6)

1.2385 (15)
1.237(2)
1.237 (3)
1.2385 (25)
1.241(2)
1.241(4)

4 ~ ~

1.260 (3)
1.260(6)
1.261 (3)
1.260(3)
1.260(4)

~ ~ ~

~ ~ 0

0.0359 (7)
0.036 (2)
0.035 (3)
0.031(4)
0.031(11)

~ ~ 4

1.2623 (6) 0.0375 (5) 0.52(3) (x)
O.49(4) (g)
0.54(5) (x)
0.51(3)

~ ~ ~

0.498 (2)
0.496 (5)

0.866(12) (x)
O.876(6) (g)
0.87(4) (x)

a,/a„

0.83 (5)

0.85
0.8(1)

~ ~ ~

0.65 (5)

Reference

Present
work
1

5

10
11
7
9
8

methods together with increased stability. Also,
since a double-power-series representation is not
essential, the method extends the class of functions
for which PDA's can be constructed. This gives the
possibility of new applications; an example is the
lattice scalar P model. Both unbiased and biased
PDA's can be studied. Our investigation indicated
that biasing for an antiferromagnetic singularity
may improve stability. A natural generalization of
our approach would be to construct approximants
along an arbitrary trajectory [x(t,u),y(t, u)], with u
fixed, when x(t, u) and y(t, u) are power series int.
Another generalization is to construct approximants
based on four series with a common fixed point
(x",y') e.g. , x, Bx/By, (', and Bg'/By.

An initial application to 21-term, high-tem-
perature double-Gaussian model series was carried
out. Only homogeneous and inhomogeneous ap-
proximants with a constant driving term (L =0)
yielded distributions of approximants with minimal
scatter. The results obtained are consistent with the
previous analysis of Chen, Fisher, and Nickel, but
have significantly less scatter. These results are
also, within error bars, consistent with other anal-

yses of the three-dimensional double-Gaussian Is-
ing model series. The results for the dominant crit-
ical exponents are slightly higher than the second-
order inhomogeneous (L =1) DA results of Nickel
and Rehr and slightly lo~er than the field-theoretic
series results. However, both q and the subdom-
inant amplitude ratio a &/a „show significant
discrepancies with respect to the field-theoretic
results.
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perature coefficients. This work was supported by
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