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It is claimed that extended monopoles of the 't Hooft —Polyakov type admit parastatistics in

the sense of Finkelstein and Rubenstein.
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The Finkelstein-Rubenstein interpretation of
statistics in kink field theory is more akin to the in-
terpretation used in first-quantized point-particle
mechanics than that in second-quantized, algebraic,
field theory. The exchange of position of two kinks
introduces a change of phase of the wave function.
If the phase is —1 this describes Fermi statistics, if
the phase is +1, Bose statistics, and any other pos-
sible phases, parastatistics. (The term parastatistics
originally referred to non-Abelian representations
of the symmetric group but Finkelstein and Ruben-
stein used it in the above sense. )

In order to orient the reader an example of the
way in which particle statistics can be considered to
arise in point-particle mechanics is described in a
language which extends to Finkelstein and Ru-
benstein's discussion of the statistics of kinks and
the present discussion of monopoles. A system
consisting of k distinguishable point particles in n

dimensions has (R")", the Cartesian product of R",
k times, as its configuration space. The points are
ordered k-uples (r &, r 2, . . . , r k), r k F R". Howev-
er, it is natural to exclude points of coincidence in
which case the configuration space becomes
M„(R")= (R")QDk(R") where Dk(R") is the sub-
set of (R")"such that r;= r, for at least one pair
i A j. If the particles are also assumed to be indis-
tinguishable the configuration space is further re-
stricted to the quotient C„(R")= M„(R")/Sk,
where Sk is the symmetric group which acts on
M„(R") by permuting the k-uples. That is,
Ck(R") is the space formed from Mk(R") by iden-
tifying points which are related by permutations of
the k-uples. The existence of Fermi statistics and
indeed parastatistics requires that multivalued wave
functions can be defined .on the configuration space
C„(R").

The physicist is very familiar with multivalued
functions in complex variables, for example, the
logarithm function f(z) =Inz=ln~z~+ I'argz. The

function is not defined at the origin and tracing the
value of the function as a point z moves in a loop, a
closed path, around the origin the function changes
by 27ri: f(r, 0) =f(r, 8+27r)+27ri, that is, the
function is multiply valued. The way in which this
multiple valuedness is resolved is by either using a
cut, in which case tracing the function around in a
loop about the origin is disallowed, or by consider-
ing the Riemann surface, a helixlike superposition
of planes, with which everyone is familiar. There
are an infinite number of points on the Riemann
surface, one for each integer, which correspond to a
single point on the original complex plane. Thus,
the original complex plane can be thought of as a
quotient S/Z of the Riemann surface S by the
group of integers Z. The function f is single valued
on the Riemann surface and this gives rise to an in-
finite number of values on the complex plane by
projection, one value for each integer. It is the con-
cept of a Riemann surface which is generalizable.

In the generalization, the Riemann surface is
called the covering space of the "configuration
space" on which the function is defined. In the
above example the configuration space is the com-
plex plane minus the origin. The way in which the
covering space can be constructed is by considering
loops in the configuration space. The actual shape
of the loop is immaterial. Two loops are considered
equivalent, and said to be homotopic, if one can be
continuously deformed into the other. This con-
cept is again very familiar in complex variables;
when considering integrals around a singularity it is
not the locus of the loop that is important but what
singularities it encloses and how many times it en-
circles them. A loop which encircles a singularity is
not homotopic to a loop which does not and a loop
which encircles a singularity n times, say, is not
homotopic to a loop which encircles a singularity m

times for m different from n. In the logarithm ex-
ample the only singularity is the origin and loops
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are distinguished by the winding number, the
number of times the origin is encircled. Thus, the
homotopy classes of loops are classified by the
group of integers Z, the winding number. This is
the group which appears in the quotient S/Z. In
general, homotopy classes are classified by a group
which is called the fundamental group of the confi-
guration space and denoted by m~. It is the funda-
mental group which determines the "number" of
multiple values a function defined on the configura-
tion space may take. Another example familiar to
physicists, the rotation group SO(3) which describes
the configuration space of a spherical top, can be in-
terpreted in this language. It has covering space
SU(2) and fundamental group Z/2, the group of in-
tegers modulo 2. In consequence, it admits
double-valued functions which manifest themselves
in physics as half-integral spin.

For n ~3 the fundamental group of Ck(R"),
denoted n't[Ck(R")] is the symmetric group, Sk.
For quantum mechanics this multiple valuedness is
realized by phase factors which form a representa-
tion of the fundamental group. There are only two
complex scalar representations of the permutation
group: Bose statistics in which all permutations are
represented by the unit 1 and Fermi statistics where
a permutation is represented by + 1 depending on
whether the permutation is odd or even.

For two spatial dimensions things are very dif-
ferent, 7rt[Ck(R")]=Brk, the b&aid group. As
this situation is relevant to monopoles this will be
further explained. Let jc t, c2, ...., ck] be /c col-
linear points in R". A loop based at [c t,
c2, . . . , c k] in Ck(R") may be thought of as a
braid on k strings with homotopic loops correspond-
ing to equivalent braids. An example for k=3 is
shown in Fig. 1. The braid group Brk can be
described by generators b~, b2, . . . , bk where the b;
is represented by the braid in Fig. 2, an interchange
of particles c; and c;+~. As can be appreciated from

Fig. 2 the generators are subject to two sets of rela-
tions:

b, b, =bjb, , 1»i. i (k —1, li J'I —)2;
~I~f+ ]~I ~I+ 1 I jII+ ]

More details can be found in Ref. 3. The scalar
representations of a generator 6; are given by
exp(in), n E [0, 2m). For n=0 this describes bo-
sons and for o. =m fermions; other values describe
anyons.

This anyon behavior of point particles in two
dimensions is tempered when they are given ex-
tended monopole structure. The configuration
space of a general Yang-Mills-Higg's field is given
by the quotient of a pair, (Cx F)/G, where C is a
space of gauge potentials A (connections), F the
configuration space of the Higg's field, and 6 the
gauge group. In the t' Hooft-Polyakov model, the
configuration space of the Higg's field F is the space
of maps R RH such that the sphere at infinity of
physical space R is mapped into the unit sphere of
the iso-space Rz. This space of maps is denoted
descriptively by (RH, SH) (R,S ). As described
previously, it is the boundary map S S& which
gives rise to monopoles. The degree of the boun-
dary map counts the algebraic number of mono-
poles, a monopole contributing +1 and an an-'

timonopole —1 to the degree. Thus, although
monopoles live in three-dimensional space their to-
pological structure is essentially two dimensional. It
is this fact that accounts for the possible unusual
statistics.

The relation between monopoles and point parti-
cles in two dimensions can be explained as follows.
Consider k points on the sphere at infinity sur-
rounded by small islands. Map the "sea" to the
North pole Nz of S& and each "island" with a fixed
map of degree 1 into SH. The "small island" map
can be extended from the boundary sphere S into
the interior R3 by strings (narrow tubes attached to

FIG. 1. An example braid. FIG. 2. A representation of a generator of Br6.
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S2 at each island). The strings are not allowed to
intersect and they terminate in small spheres at
chosen points in the interior. Points outside the
tube, "the under sea, " are mapped into the North
Pole NH of SH. The value taken at points inside the
tube and on the upper half of the terminating hemi-
sphere are fixed degree-one maps given by projec-
tion from the island along lines parallel to the axis
of the tube. Points on the outer hemisphere of the
terminating spheres are mapped to WH. The value
of the field inside the small sphere is given by radial
projection. Thus, at the center of the small sphere
the value of the field is zero and this corresponds to
the monopole center. In this way a k-monopole
configuration can be associated with k points on the
boundary sphere. Interchange of monopoles can be
achieved by shrinking the string to the boundary,
interchanging the position of the small islands on
the boundary, and then extending the strings to
their previous positions. This shows the relation
between monopole interchange and the braid group
of kparticles on a sphere S .

If the gauge group is assumed to be
(SU(2),I)(R3,S ), that is, the space of all maps
from R3 to SU(2) such that g(r) E SU(2) tends to
the identity element of the group I as r tends to in-
finity, then using the above correspondence, it can
be shown (the details of the proof involve esoteric
topology and are not illuminating) that the funda-
mental group associated with a k-monopole confi-
guration is Z/2k, the group of integers modulo 2k.
The representations of Z/2kare exp[i7rm/k] ~here
m is an integer in the range 0~ rn (2k. Thus,
with the above assumptions monopoles admit para-
statistics in the sense of Finkelstein and Ruben-
stein. The essential reason why Finkelstein and
Rubenstein found that kinks did not admit paras-
tatistics is that they are intrinsically three dimen-
sional; monopoles, on the other hand, are intrinsi-
cally two dimensional ~

Note that the word admit is to be understood in

the sense of "allows. " This is the same sense in

which SO(3) admits double-valued representations.
It means that such representations are possible but
by no mean obligatory. It is not compulsory that an
interchange of two monopoles in a k-monopole
configuration give rise to a change of phase of the
wave function by exp[i 7r/k] The equally adm. issi-
ble m = 0 case gives Bose statistics and the choice
m = k gives Fermi statistics. Any other choice does
give parastatistics. These forms of statistics are
unusual in that they depend on the number of
monopoles.

The use of covering spaces and fundamental

groups in relation to the statistics of monopoles has
been examined before. In this reference it was
claimed that monopoles admitted Fermi statistics.
This partial result was based on an incomplete
analysis of the fundamental groups of monopole
configurations and does not contradict the present
findings. The complete analysis reveals the richer
structure which is reported herein.

Jackson claimed that monopoles admit spin.
This claim is based on the same assumptions of the
form of the gauge group that are assumed herein.
The word admit was also used in the same sense as
above. Indeed, the whole tower of spins (integral
and half integral) are admitted in the same way that
the spherical top admits the whole tower of spins.
A nice pictorial indication of the existence of
monopole spin has been given by Misner, Thorne,
and Wheeler. In Fig. 41.6, the two concentric
spheres represent the boundary sphere of space and
the unit sphere of isospace. The end points of the
strings are representative pairs of the graph of the
identity map S SH, which is an example of a
one-monopole configuration. The frames of the
figure show the unwinding of a 4m rotation of the
identity map. This implies that a 2m rotation is
classified by an element of the fundamental group
which is at most of order two, that is, at most
double-valued functions are admissible.

Although the possibility of multivalued complex
functions over function spaces can be derived im-
plicitly using arguments about fundamental groups,
it is hard to visualize these functions. An example
of such a double-valued function for kinks has been
given. One of the present authors has shown the
relation of Dirac monopoles to spin. ' This relation
is more interesting than for t' Hooft —Polyakov
monopoles for two reasons. Firstly, the Dirac
monopole is directly associated with spinor fields;
there is no tower of spins. Secondly, the argument
is completely classical using only elementary elec-
trodynamics and differential geometry. From work
in progress" it seems as if Dirac monopoles are na-
turally combined using Fermi statistics; again this
result is derived from classical electrodynamics and
differential geometry.

The association of Dirac monopoles with magnet-
ic charge rather than electric charge is completely
arbitrary (Ref. 7, p. 251). This situation is similar
to the arbitrary choice of conventional electric
current flow made by Benjamin Franklin. Basing
his judgement on his experiments in electrostatics
he imagined electric current as a fluid flowing from
one charged body to another. His investigations did
not reveal what sign of charge the fluid carried but
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he conjectured it was positive. It is evident that,
provided one is consistent and not trying to under-
stand more fundamental structure, reliable predic-
tions can be made with incorrect assumptions. This
may be analogous to the present situation; perhaps
by associating monopoles with electric charge we
can achieve the (overdue) deeper understanding of
spin, statistics, and the discrete nature of electric
charge.
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