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N-Color Ashkin-Teller Model in Two Dimensions:
Solution in the Large-N Limit
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The ¹olorAshkin-Teller model is solved exactly in the large-%limit in two dimensions.
The phase diagram is found. It is sho~n that for positive four-spin coupling the transition is
first order while for negative four-spin coupling the transition is continuous and Ising type.
The specific heat near the second-order transition is calculated and it is found to be finite at
the transition because of large corrections to scaling. The latent heat and correlation length
at the first-order transition are also calculated.

PACS numbers: 05.50.+q, 05.70.Jk, 75.10.Hk

The two-dimensional Ashkin-Teller model has
attracted considerable attention in recent years.
The two-color model (N =2) has a line of fixed
points terminating at a Kosterlitz-Thouless phase
transition. The model is solvable at its self-dual
line through a mapping to the Baxter model. ' The
case N &2 is not as well understood. Grest and
Widom have performed a detailed study for weak
four-spin coupling. They concluded that if the
four-spin coupling g is positive the transition is first
order and if g &0 it is second order. This con-
clusion resulted from a renormalization-group
(RG) analysis, which showed that for g )0 and
N &2 g is marginally relevant, and a Monte Carlo
simulation for N=3 that indicated a first-order
transition. Conversely, for g (0 and N &2 they
found g to be marginally irrelevant.

The N 0 limit of this model represents the
random-bond Ising model. In a recent paper
Dotsenko and Dotsenko4 calculated the specific
heat and other quantities in perturbation theory.
They showed that there are significant changes in
the form of the singularities. I will show below that

N
H=P $ $ tr (r)t—r (r ')+ $ [

there are corrections to scaling also present in the
N ~ limit. Their form is, however, different in
both cases.

In this note I show that the ¹olorAshkin- Teller
model is exactly. solvable in the large-N limit. I also
show that the transition is first order for g & 0 and
second order for g (0. Furthermore, I calculate
the latent heat, the discontinuity of the magnetiza-
tion, and the correlation length at the first-order
transition. For g (0 I calculate the specific heat
near the transition and show that it becomes finite
as a result of strong corrections to scaling. This
result is rather surprising at first sight. In four
dimensions, where the specific-heat exponent of
the Ising model is zero just as in two dimensions,
corrections to scaling only change its form from
1 ~tn~ to (in~ t~)' . 1 also show that other physically
interesting-quantities do not acquire corrections to
scaling at N = ~. Such corrections are expected to
appear in first order in a 1/N expansion. These
results will be published elsewhere.

The Hamiltonian of the ¹olor Ashkin-Teller
model is

N

a~ r (r~
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where the sum runs over nearest-neighboring points ( r, r ') of a square lattice of size L x L To show that

simplicity is attained in the large-%limit I use the identity

Thus the partition function (PF) is

N
2'
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with
N

S[g, ]o= $ {—,'Np(r, r ')+[p+g' p(r, r ')] go- (r)a (r ')}.

(3)

(4)

After integrating out the Ising spins one finds

Z=)t'-p[- X —,'Ny'(.-, .-)][Z,{p+g'&'y(.-, .-) }] rI d~ ','„',

where Z~ {k(rr') } is the PF of an Ising model with bond strengths k( r r') =P+ g'~ P(rr').
In two dimensionsthe PF of an Ising model with arbitrary bonds has the form

Z&{k( r, r ') }=[detM{k(r, r ') }]'2[ g coshk( r, r ')] —= e
(f ~ f )

where Mis a 4L x4L matrix. Thus the PF is

(6)

Z = '„, exp —M
l I): 2rr

where

S[p] = $ { , p (r, r') —Inco—sh[p+g'~ p( r, r ')] }——,IndetM{p+g'~ p( r, r ') }
(r,r')

(7)

is the effective action.
The form of Eq. (7) suggests a saddle-point approximation. In this approach all one has to do is to find the

field Q( r, r ') which extremizes S[$]. The thermodynamically stable state will be that of lowest energy:
Since the solution of the saddle point equation (SPE) will be uniform (and isotropic) one simpy has to find
the extrema of S[Q] for constant p( r, r ') = qk Introducing x =tanh(p+g'~ $) and using the expression
for detMfrom the Onsager solution, I find

+in(1 —x) —— ln[(1+x ) —2x(l —x') (cosp~ +cosp2) ],(2m)'
where the integral is restricted to the first Brillouin zone.

The SPE is found by minimizing v(P). The result is

tanh 'x=P+gF(x),
with

I'(x) = —x+—+—1 1 2 kK(k) 2 (1 —3x)x(1+x')—
4 x m x k

1968
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where k =4x(1 —x2)/(1+x')' and K(k) is the complete elliptic integral of the first kind. Once a solution
of Eq. (10) is found one concludes that, at N = ~, all the colors behave like an effective Ising model with ef-
fective coupling K =p+g' 'p. If E happens to equal the Onsager value Ko= —,'ln( 42+I) the correlation
length of the system would be finite. It turns out that K = Kp is not a low-energy solution unless g & 0. For
g )0 if K = Kp is a solution there are always two other solutions Ki and K2 such that Ki & Kp & K2 with
lower energy. In fact there is a curve in the (p, g) plane on which Ki and E2 have the same energy. Since
K& & Kp the system is disordered and the correlation length is finite. Conversely for K2 )Kp the system or-
ders. Hence this curve represents the phase boundary of a first-order transition. For g & 0 there is a curve in
the (p,g) plane in which K =Ko is the only solution and this curve is the phase boundary of a second orde-r

transition. For g & 0 it coincides with the straight line p+g J2/2 = Eo, while for g & 0 they coincide if gi4
very small. It is worth noting that at N = ~ this system has only two phases. Grest and Widom find a richer
phase diagram. The extra phases disappear at large N, like 1/N.

It is instructive to solve Eq. (10) for E —Ko (or x —xo ——J2 —1). By setting x =xo —5, Eq. (10) now
reads

0 = s +2 5 +851n l 5l,

~here

s =P+g —ko,
JX
2

42+1 41+g ——gln[2v2(J2 —1)], g3= —(@2+1)g4
2 7r 7r

t

Setting s =0 (i.e., on the phase boundary) I find the solutions

Sp =0,

l50l = e " = [2%2(K2 —1)e ]' e " (double root).

(13a)

(13b)

For g & 0 the lowest-energy state is (13b) which is a double root. For g & 0 the only solution is 5 =0 (i.e.,
x =J2 —1). If s &0 but small, one finds

Sp—n( J2 —1)
s, $(0,

7r( J2 1)—
s, $)0,

(14a)

(g &0) and

m( J2 —1) 5

4lgl Inls/4m '(42+I)g50l

(g & 0). With these results on hand we can read off the following physical properties.

(i) g & 0: The transition is first order. The value of x at the phase boundary determines the correlation
length at the transition: It is just the correlation length of an Ising model with x =xp —5. For g 0, p 0
and the correlation length is'

1 W2 —1 1 J2 —1

41K KO I 2 1501 4
7r 1

exp —1 +—
8 g

The latent heat Q can be calculated by computing the discontinuity of the slope of the free energy across the
transition. The result is

0 = [842(42+I) ]'t g 'exp[ —(7r/8) (1/g +1)] (E ~ 0). (16)



VOLUME 53, NUMBER 21 PHYSICAL REVIEW LETTERS 19 NOVEMBER 1984

Both Q and ( satisfy the RG equation of Grest and Widom, '

dK4

dl
= (8/n ) (N —2) E4', (17)

if one makes the identification N' K4=g. This expression suggests that these formulas may become exact
by replacing g (N 2)E—4 as dictated by scaling. The same type of calculation indicates that at N = 00 the
magnetization M, at the transition jumps to zero like I hoI

'ts.

(ii) g (0: The transition is second order and Ising type. The correlation function at N = ~ at the phase
boundary diverges like I/R't and the magnetization vanishes like IP —P, (g) I'ts. Since g is marginally ir-
relevant these results are expected to acquire corrections to scaling already at X=~. It can be calculated by
differentiating the free energy twice. The result is (s 0, g fixed)

2
I

8 ~2 ~2 I I I I
IsI exp(I+a/8)(m/4)(J2 —1)

ln( I s I/F2~2(~2 —I) 1' 'Ig I)
+ 0 ~ ~ ~ (18)

Thus the specific heat no longer diverges at the
transition if g &0. Instead the specific heat has a
cusp at the transition since its derivative t)C, /ris
diverges like Isln IsII '. Naturally, if g 0 (s
fixed) one recovers the logarithmic divergence of
the two-dimensional Ising model. Note that Eq.
(18) is valid for all g (0 as long as s 0.

In conclusion, I solved the ¹olorAshkin-Teller
model in the %= ~ limit. I showed that the transi-
tion at the decoupling point is a tricritical point.
Explicit formulas are given for the latent heat, mag-
netization jump, and correlation length at the first-
order transition (g )0) as well as the specific heat
and other quantities at the second-order transition
(g (0).
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