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The N-color Ashkin-Teller model is solved exactly in the large-N limit in two dimensions.
The phase diagram is found. It is shown that for positive four-spin coupling the transition is
first order while for negative four-spin coupling the transition is continuous and Ising type.
The specific heat near the second-order transition is calculated and it is found to be finite at
the transition because of large corrections to scaling. The latent heat and correlation length
at the first-order transition are also calculated.
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The two-dimensional Ashkin-Teller model has
attracted considerable attention in recent years.
The two-color model (N =2) has a line of fixed
points terminating at a Kosterlitz-Thouless phase
transition. The model is solvable at its self-dual
line through a mapping to the Baxter model."> The
case N >2 is not as well understood. Grest and
Widom?® have performed a detailed study for weak
four-spin coupling. They concluded that if the
four-spin coupling gis positive the transition is first
order and if g <0 it is second order. This con-
clusion resulted from a renormalization-group
(RG) analysis, which showed that for g >0 and
N >2 gis marginally relevant, and a Monte Carlo
simulation for N =3 that indicated a first-order
transition. Conversely, for g <0 and N > 2 they
found gto be marginally irrelevant.

The N — 0 limit of this model represents the
random-bond Ising model. In a recent paper
Dotsenko and Dotsenko* calculated the specific
heat and other quantities in perturbation theory.
They showed that there are significant changes in
the form of the singularities. I will show below that
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there are corrections to scaling also present in the
N — oo limit. Their form is, however, different in
both cases.

In this note I show that the N-color Ashkin-Teller
model is exactly solvable in the large-N limit. I also
show that the transition is first order for g > 0 and
second order for g <0. Furthermore, I calculate
the latent heat, the discontinuity of the magnetiza-
tion, and the correlation length at the first-order
transition. For g <0 I calculate the specific heat
near the transition and show that it becomes finite
as a result of strong corrections to scaling. This
result is rather surprising at first sight. In four
dimensions,*>~’ where the specific-heat exponent of
the Ising model is zero just as in two dimensions,
corrections to scaling only change its form from
In|¢] to (In]¢])'. 1 also show that other physically
interesting -quantities do not acquire corrections to
scaling at N =oo. Such corrections are expected to
appear in first order in a 1/N expansion. These
results will be published elsewhere.

The Hamiltonian of the N-color Ashkin-Teller
model is
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where the sum runs over nearest-neighboring points (", ') of a square lattice of size L X L. To show that
simplicity is attained in the large- N limit I use the identity
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Thus the partition function (PF) is
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After integrating out the Ising spins one finds
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where Z;{k(r,r') } is the PF of an Ising model with bond strengths k(r,r') =8 +g'2¢(r,r").
In two dimensions the PF of an Ising model with arbitrary bonds has the form?
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where Mis a 4L x4L matrix.*#® Thus the PF is
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where

Slel= 2 {+¢%(r,r') —Incosh[B +g'2¢( T, )1} — tIndetM (8 +g'2¢(T, 7)) )]
(rr')
is the effective action.
The form of Eq. (7) suggests a saddle-point approximation. In this approach all one has to do is to find the
field ¢( 1", T"’) which extremizes S[¢]. The thermodynamically stable state will be that of lowest energy:
Since the solutlon of the saddle point equation (SPE) will be uniform (and isotropic) one simpy has to find

the extrema of S[¢] for constant d)( i, ') =¢. Introducing x =tanh(g8 +g'2¢) and using the expression
for det M from the Onsager solution,? I find
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where the integral is restricted to the first Brillouin zone.
The SPE is found by minimizing v(¢$). The result is

v(e) =
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tanh " !x =B +gF(x), (10)
with
F(x)=—[ +1, 2 KD (1+x2)~ﬂ‘73"2—) ] 1)
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where k =4x(1 —x?)/(1 +x%)? and K (k) is the complete elliptic integral of the first kind. Once a solution
of Eq. (10) is found one concludes that, at N = o, all the colors behave like an effective Ising model with ef-
fective coupling K =8 +g'?¢. If K happens to equal the Onsager value Ky=+5In(~/2 +1) the correlation
length of the system would be finite. It turns out that K= K is not a low-energy solution unless g <0. For
g >0 if K=K, is a solution there are always two other solutions K; and K, such that K; < K, < K, with
lower energy. In fact there is a curve in the (8,2) plane on which K; and K, have the same energy. Since
K| < K the system is disordered and the correlation length is finite. Conversely for K, > K, the system or-
ders. Hence this curve represents the phase boundary of a first-order transition. For g < 0 there is a curve in
the (B,g) plane in which K = K|, is the only solution and this curve is the phase boundary of a second-order
transition. For g <0 it coincides with the straight line 8 +g~/2/2 = K, while for g > 0 they coincide if g is
very small. It is worth noting that at N = oo this system has only two phases. Grest and Widom? find a richer
phase diagram. The extra phases disappear at large N, like 1/N.

It is instructive to solve Eq. (10) for K ~ K, (or x ~xy=+2—1). By setting x =x,— 8, Eq. (10) now
reads

0=5+A48+BsIn|sl, (12)
where
s=,8+gg—k0, A= 22+1 [1 +g—§;—gln[2\/§(\/§—l)] , B=i(x/§+l)g.
w
Setting s =0 (i.e., on the phase boundary) I find the solutions
8()=0, (13&)
|80l =e~4/B=[22(\/2—1) e~ ™42 =7/32 (double root). (13b)

For g > 0 the lowest-energy state is (13b) which is a double root. For g <0 the only solution is =0 (i.e.,
x=+/2—1). If s#0 but small, one finds
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(g <0). With these results on hand we can read off the following physical properties.

(i) g >0: The transition is first order. The value of x at the phase boundary determines the correlation
length at the transition: It is just the correlation length of an Ising model with x =x,—38. For g —0, §—0
and the correlation length is'°
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The latent heat Q can be calculated by computing the discontinuity of the slope of the free energy across the
transition. The result is
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0 =1[8V2(V2+1)1"2g texpl — («/8)(1/g +1)] (K —0). (16)
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Both Qand ¢ satisfy the RG equation of Grest and Widom,?

K 8/ (N-DK, (17)
dl
if one makes the identification N'/ 2K4=g This expression suggests that these formulas may become exact
by replacing g2 — (N —2) K} as dictated by scaling. The same type of calculation indicates that at N = oo the
magnetization M, at the transition jumps to zero like |8,|'/%.

(ii) g <0: The transition is second order and Ising type. The correlation function at N = o at the phase
boundary diverges like 1/RY* and the magnetization vanishes like |B—-,Bc(g)|1/8. Since g is marginally ir-
relevant these results are expected to acquire corrections to scaling already at N = o. It can be calculated by
differentiating the free energy twice. The result is (s — 0, gfixed)

2 8 |5l exp(1 +7/8) (w/4) (V2 —1) ||
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Thus the specific heat no longer diverges at the
transition if g <0. Instead the specific heat has a 2L. P. Kadanoff and A. Brown, Ann. Phys. (N.Y.) 121,
cusp at the transition since its derivative 9C,/ds 318 (1979).
diverges like |sIn?|s||~!. Naturally, if g—0 (s 3G. Grest and M. Widom, Phys. Rev. B 24, 6508

fixed) one recovers the logarithmic divergence of (128!)~
the two-dimensional Ising model. Note that Eq. 0 V(li( S3.)Dotsenkfo and V1. S. Dotsenko, Adv. Phys. 32,
(18) is valid for all g <0 as long as s — 0. 9 (1983), and references therein.
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