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Theory of the Structure Factor of Metallic Glasses
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A recently developed Landau description of short-range icosahedral order in supercooled
liquids and metallic glasses is used to calculate density correlation functions in these systems.
The theory predicts frustration-broadened peaks in the structure factor, at positions deter-
mined by the symmetries of an ideal, curved-space icosahedral crystal. The results provide a
good fit to experiments on vapor-deposited metal films.
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A long-standing challenge in the theory of amor-
phous solids has been a direct theoretical under-
standing of scattering experiments which probe the
structure of metallic glasses. ' Despite relatively
sharp peaks observed, e.g. , in the structure factor
S(q) of single-component vapor-deposited metal
films, conventional microcrystalline models do
not appear tenable. 4

There is mounting evidence that the short-range
order in supercooled liquids and metallic glasses is
predominantly icosahedral. 5 The growing icosahe-
dral correlations found in molecular-dynamics simu-
lations are consistent with the rise in specific heat
in undercooled liquid metals. 7 A number of au-
thors ' have argued that this icosahedral order is
related to an ideal, icosahedral crystal (called "po-
lytope (3,3,5)") consisting of 120 particles imbed-
ded in the surface $3 of a four-dimensional (4D)
sphere. Regions of short-range (3,3,5) order in a
glass are broken up by a tangled array of —72'
wedge disclination lines, forced in by "frustration, "
i.e., the incompatibility of flat space with a space-
filling icosahedral solid. The Frank-Kaspar phases
of transition-metal alloys are ordered phases of
these lines. A disordered network of such lines
provides an appealing model for structure in metal-
lic glasses.

Recently, a uniformly frustrated Ginzburg-
Landau free energy describing icosahedral order in
dense liquids has been proposed. " A set of order
parameters 0„~ ( r ) is obtained by projecting a

local particle configuration onto a 4D tangent
sphere which can accommodate a perfect icosahe-
dral lattice, and then expanding the projected parti-
cle density in the hyperspherical harmonics Y„

These 4D spherical harmonics form a complete set
of functions on the sphere S, and also generate ir-
reducible representations of SO(4), n being the in-

dex of the representation. Only the representations
n =0, 12, 20, 24, 30, 32, 36, . . . are allowed for po-
lytope (3,3,5)." The azimuthal quantum numbers
m& and m2 vary in integer steps in the range

—n/2~ mt, m2 ~ n/2. An earlier continuum elas-
tic approach' used the n =1 representation of
SO(4), and did not allow explicitly for amplitude
fluctuations. Because the magnitude of the order
parameter vanishes at disclination cores, smooth
variations in the order-parameter amplitude will in
fact appear as soon as one uses coarse graining over
a volume containing several disclinations. Since the
disclination network forced in by the frustration is
very dense, amplitude fluctuations will be impor-
tant at virtually all length scales, even at tempera-
tures near T~.

In this paper we use the Ginzburg-Landau theory
to calculate density correlations in supercooled
liquids and metallic glasses. The theory predicts a
peak in the structure factor S(q) for every allowed
value of n. A crude estimate of the peak position

q„ is given by integrating the gradient squared of
the relevant spherical harmonic over the unit vector
u parametrizing S,"

q„=K JtdQ-~ "7&„(u)
~

=K n(n+2). (1)
Here, K is the inverse radius of the tangent sphere;
it is related to the near-neighbor particle separation
d in polytope (3,3,5) by9 Kd=m/5=-0. 628. Our
calculation makes these estimates precise, and
shows explicitly how the peaks are broadened by
frustration. The results are in good agreement with

experiments on vapor-deposited metal films, which
exhibit peaks corresponding to n = 12, 20, and 24,
and an additional peak which appears to be a com-
posite of n =30 and n = 32. The peaks in binary
metallic glasses are broadened relative to single-
component systems, ' an effect which we show is
easily accounted for with the Landau approach. We
also remark on the relevance of these calculations
to covalently bonded glasses.

Using the order parameters defined in Ref. 11,
we can define a density on the tangent sphere at
every point r via the relation

p(r, u)= X X 0„, ,(r) I'„', , (u).
n=o ml, nl2
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The flat-space particle density p(r ) is given by
p( r, —1), where —1 denotes the south pole of the
tangent space. Since

I'„, ( —1) = ( —1)"[(n+ I)/2+2]t 25m&m2,

we see that the physical particle density is deter-
mined by the traces of the (n+1) x (n+1)-matrix

order parameters {g„,,(r)). We shall impose
the energetic preference for short-range icosahedral
order by requiring that the total free energy be
given by F=$„F„,with the summation restricted
only to the icosahedral modes n = 12, 20, 24, . . . .
We exclude, for simplicity, the unimportant
uniform-density mode at n =0. The free energy as-
sociated with the nth mode is given by"

I' n= 2 d 4 En 8&
—iKLg& n +I'n n +0

For notational convenience, we have written the
matrices g„~,~, as (n+ 1) -component vectors Q„.
The form of the gradient term biases F„ toward
neighboring particle configurations which are relat-
ed by "rolling the sphere, " or the equivalent
"star mapping" construction of Sadoc and Mos-
seri. '2 The quantity Lot„"l is a (n+1)z&&(n+1)z
matrix generator for rolling the nth representation
of SO(4) in the direction p, = x, y, or z. The set of
noncommuting matrices (~Lp&, KLa, . . .) play
the role of reciprocal-lattice vectors in this ap-
proach. "

Our calculation is based on the following physical
picture: When the masses r„ in Eq. (2) are posi-
tive, we have a high-temperature liquid, which can
be regarded as a tangled mass of + 72' disclination
lines. At low temperatures, when the r„'s are large
and negative, the ground state is a Frank-Kasper
lattice of —72' disclination lines. We expect taht
I'~2, the mass corresponding to the smallest
reciprocal-lattice vector, changes sign at the mean-
field instability temperature in S of an undercooled
120-particle liquid relative to the unfrustrated
icosahedral crystal. In flat space, the frustration
embodied in the gradient term in Eq. (2) will

depress the corresponding instability temperature
T,
' against a Frank-Kasper phase down to very low

temperatures. The situation is similar to the
behavior near H, z(t) of a type-II superconductor in
a strong magnetic field, except that the equilibrium

(2)

transition to a Frank-Kasper disclination network
(the analog of an Abrikosov flux lattice) is expected
to be first order. "

The disclination lines in the high-temperature
liquid carry non-Abelian SU(2) matrix charges. As
a result, there are strong topological barriers inhib-
iting line crossings at low temperatures. One
would expect the kinetic constraints associated with
this entanglement to increase with the amount of
short-range icosahedral order, becoming more and
more severe as a liquid is cooled below its freezing
transition T to, say, an equilibrium fcc crystal.
Good glass formers will drop out of equilibrium be-
cause of entanglement at a temperature Tg ( T
before reaching the instability temperature T,

'
against a Frank-Kaspar phase.

These ideas suggest that we can evaluate density
correlations in a glass (or in a liquid just above Tg)
by averaging over order-parameter configurations
weighted by exp( —F/ka Tg). As a first approxima-
tion, we can truncate the expansions in (2) at qua-
dratic order in the {Q„), since the large intrinsic
density of defects forces these order parameters to
be small. Note that we are using the statistical
mechanics of a liquid in metastable equilibrium to
determine preferred particle configurations, rather
than a literal mappings' of polytope {3,3,5) into
flat space.

The structure factor is given in terms of the
Fourier-transformed particle density by

s(q) =(lp(q)l ) = X "", (lxg„..
n =12,20, 24, . 2' m

n™m

Upon Fourier transforming the free energy (2), we
see that we need the eigenvalues and eigenvectors
of B = q —2Kq Lo" + K (Lo" ) The com-
ponents of L0„n can be evaluated by means of the
homeomorphism between SO(4) and SU(2)
S SU(2), '3 and the noting that g„, , transforms

like the composite angular momentum ket vector
( —1) 'l ,' n mt, ,' n —m2). A——ftera simple unitary

transformation, the generator L0„n can be written
as L(n) g (n/2) g(n/2, where 3 (n/2 and ~(n/2)

p

1948

(q) I'& (3)

are the generators of two independent (n+1)-
dimensional irreducible representations of SU(2).

The problem of diagonalizing the B n s is simpli-

fied by first noting that the operator M„=j
[A "~ '+ B~"~ ~] commutes with B „, and has in-

tegral eigenvalues in the range —.n ~ M ~ n.

Quantizing along the q axis, we find that g „breaks
into ( n —

l
M

l
+ 1)-dimensional subspaces indexed

by the value of M It follows that we can denote
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the eigenvalues of B „by &~;, where i runs from i to n —IM I+ 1. The result of numerically determining
the lowest three eigenvalues in each subspace for n = 12 as a function of I q I is shown in Fig. 1. The etgen-
values for +M and —M are degenerate. The fact that these eigenvalues are always positive is due to the
frustration embodied in Eq. (2); it is impossible to make the gradient term vanish everywhere. " Because
Q„—I

—,
'

n m, ,' n ——m ), only the eigenvalues of the M = 0 manifold will contribute to the structure func-
tion. It follows from Eq. (3) and the equipartition theorem that

X ",X .'' IX;..I',
n= 12, 20, 24, . . . 2~ i + ~0,i(q) +"

~here e„'~~ is the projection of the ith eigenvector f

onto Q„~~. Evidently, there will be for every n, a
peak in S(q) which is essentially determined by the
wave vector q;„minimizing the smallest M=O
eigenvalue, ltd;(q). Both numerical and perturba-
tive evalutions of q;„are consistent with the esti-
mate in Eq. (1).

The theory formulated above is directly applica-
ble to monatomic metallic glasses. While it has not
yet been experimentally possible to make such sub-
stances by spin-cooling the melt, one can make thin
films of amorphous metals by vapor deposition onto
a cold substrate. It is believed that essentially the
same structure would result if one could cool the
melt fast enough. 4 Figure 2 sho~s a fit of our
results to the measurements of Leung and Wright3
on amorphous cobalt. Two parameters, E„/k&Tg
and r„/kaTg, have been adjusted for each peak.
The peak positions q„, however, are completely
determined by the theory once ~ is known: We
find that q&2

= 11.25K, q20 = 19.20K, and
q24= 22.96ir. The value of K was obtained from the
main position of the first peak. Using the relation
ird=n/5, we obtain a particle spacing d on the
polytope which is approximately 10% less than the
position of the first peak in the flat-space radial dis-
tribution function. The theoretical value for the ra-

tio q20/qt2 is I'/o higher than the experimental result
q20/qt2=1. 69, while the ratio q24/qt2 exceeds by
3.6% the experimental value q24/q, 2=1.97. The
n = 30 and n = 32 peaks are quite close together,
and appear as a single peak in the experiment. The
fits determine a set of masses I'~2, I 20, r24, . . . which
are all negative, consistent with the physical picture
discussed above. The free energy is stabilized,
despite these negative masses, by the frustration.
An estimate of the effect of the nonlinear terms in
Eq. (3) shows that the n = 24 peak is shifted closer
to the experimentally observed position, with much
smaller shifts in the remaining peaks. Because the
peaks for large n correspond to large reciprocal-
lattice vectors (i.e., closely spaced Bragg planes),
we expect that they will be broadened more by frus-
tration.

Two-component metallic glasses can be incor-
porated into the theory when we allow for an addi-
tional fluctuating impurity concentration c ( r ).
The simplest way in which this composition can
couple to the order parameter (other than changing
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FIG. 1. A plot of the lowest three eigenvalues for all
M of B ~2. Heavy lines correspond to the M=O mani-
fold.
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FIG. 2. Theoretical fit to the structure function of
amorphous cobalt (Ref. 3). Peak heights and widths
determine parameters in the Landau expansion; the peak
positions are a consequence of the theory.
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K) is via the replacement

F I'+ d3r
n =12,20, 24, . . .

7 „clg.l'+ —,
'x-'c' —cs),

where X is the concentration susceptibility, the y„
are coupling constants, and 5 is an impurity chemi-

cal potential. It is straightforward to show that the
effect of this coupling is to broaden the peaks in
pure systems, without significantly changing their
relative positions. This seems to be what is ob-

served experimentally. '
It may be possible to apply these ideas to co-

valently bonded glasses as well. Although the ener-
getic arguments are less well founded than for me-

tallic glasses, 5 one appealing candidate for describ-
ing tetrahedrally coordinated glasses is "polytope

240," which is a regular lattice of boat-shaped

rings inscribed on S . Particie configurations with

short-range polytope-240 order are also character-
ized by nonzero hyperspherical harmonics with

n = 12, 20, 24, . . . . This polytope should be espe-
cially appropriate for III-V compound semiconduc-

tors. ' One complication, however, is that there are
actually two chiral variants of polytope 240. ' Thus
one might expect the short-range order to be dis-
rupted by domain walls separating regions of dif-
ferent chirality, as well as by disclination lines. A
more detailed account of these calculations will ap-
pear in a future publication.

It is a pleasure to acknowledge helpful conversa-
tions with E. Chason, B. I. Halperin, F. Sapepen, D.
Turnbull, and M. Widom. This work was supported
by the National Science Foundation, through the
Harvard Materials Science Laboratory and through
Grant No. DMR82-07431.

'G. S. Cargill, III, Solid State Phys. 30, 227 (1975).
zT. Ichikawa, Phys. Status Solidi (a) 19, 707 (1973).
3P. K. Leung and J. G. Wright, Philos. Mag. 30, 185

(1974).
4R. Zallen, The Physics ofAmorphous SolEd (Wiley, New

York, 1983).
5F. C. Frank, Proc. Roy. Soc. London, Ser. A 215, 43

(1952).
6P. J. Steinhardt, D. R. Nelson, and M. Ronchetti,

Phys. Rev. B 28, 784 (1983).
7J. H. Perepezko and J. S. Paik, J. Non-Cryst. Solids

61Ec62, 113 (1984).
aJ. F. Sadoc, J. Phys. (Paris), Colloq. 41, C8-36

(1980).
9D. R. Nelson, Phys. Rev. Lett. 50, 982 (1983), and

Phys. Rev. B 28, 5515 (1983).
toJ. P. Sethna, Phys. Rev. Lett. 50, 2198 (1983).
~~D. R. Nelson and M. Widom, Nucl. Phys. B240

[FS12], 113 (1984).
&2J. F. Sadoc and R. Mosseri, Philos. Mag. B 45, 467

(1982).
t3L. C. Biedenharn, J. Math. Phys. (N.Y.) 2, 433

(1961);M. Bander and C. Itzykson, Rev. Mod. Phys. 38,
330 (1966).

&46. A. N. Connell and R. J. Temkin, Phys. Rev. B 9,
5323 (1974); R. J. Temkin, Solid State Commun. 15,
1325 (1974).

5We are indebted for correspondence with D. DiVin-
cenzo on this point. See also M. H. Brodsky, D. P.
DiVincenzo, R. Mosseri, and J. F. Sadoc, in Proceedings
of the Fourteenth International Conference on the Physics of
Semiconductors, Edinburgh, Scotland —1978, edited by B.
L. H. Wilson, IOP Conference Proceedings No. 43 (Insti-
tute of Physics, Bristol and London, 1979).

1950


