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Vector Polarization in Reactions with Spin-1 Particles
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It is shown that in any reaction involving, partially or entirely, spin-1 particles, the reaction
amplitudes can be completely determined from a set of experiments that does not include
measurements of vector polarization for any of the spin-1 particles in the reaction. In this
sense, measurements of the vector polarization of the spin-1 particles in the reaction are
dispensable. The result is applicable to any nuclear or particle reaction, for example, those
containing deuterons, rho mesons, etc.

PACS numbers: 24.70.+s, 25.45—z

Both nuclear and particle physics are rich in reac-
tions of considerable interest which contain parti-
cles with spin 1 ~ Perhaps the most prevalent of
such ingredients are the deuteron and the rho
meson. For the latter the density matrix is explored
in terms of correlation measurements of the two
decay pions. For the deuteron, in recent years the
technology of preparing polarized beams, or polar-
ized targets, and of measuring the polarization of
deuterons in the final state has made considerable
progress, and therefore such polarization experi-
ments constitute a crucial ingredient in our explora-
tion of the dynamics of nuclear- and high-energy
reactions involving deuterons. Yet, we are still far
from being able to easily furnish deuteron polariza-
tion states of arbitrary prescription. The techniques
for vector polarization are different from those for
tensor polarization, and in some respects the former
lags behind the latter. '

In order to explore the capabilities within such a
technologically incomplete situation, it is of interest
to define the extent to which information can be
obtained about reactions including spin-1 particles
without resorting to measuring the vector polariza-
tion of such spin-1 particles, that is, on the strength
of only tensor polarization measurements. This
note presents a very simple, most general, and quite
far reaching result in that respect. We show that
complete information can be obtained about the
amplitudes of any reaction containing one or
several spin-1 particles without ever resorting to use
of vector-polarized spin-1 particles. Of course, the
tensor polarization of the spin-1 particles must be
measured in correlation with the polarization of
other particles, as well, for completeness.

The theorem can also be used in a partial way.

For example, if methods of measuring final state-
vector polarization happen to be deficient, the
theorem assures us that it is sufficient to be able to
measure tensor polarization for the final state deu--

terons, which we can, if we want, combine with
specifications of vector, or tensor, or vector plus
tensor polarizations in the initial state.

In practice it is almost always advisable to over-
determine the reaction amplitudes by measuring
more observables then is theoretically necessary, in
order to resolve remaining discrete ambiguities and
in order to counteract the uncertainties caused by
large experimental errors on the measurements.
Fortunately there are a large number of tensor po-
larization observables, so that even if we want to
add such overdetermining experiments, we may
still not be forced to turn to vector-polarization
measurements if we do not wish to.

Besides exploring what is feasible with currently
available techniques, the theorem may also give
stimulus to the future evolution of tensor polariza-
tion techniques in view of their potential to suffice
by themselves. Furthermore, it is most likely that
similar theorems can also be found for particles
with spins higher than 1, an effort that may be
stimulated by the present theorem.

In order to be specific, in the subsequent discus-
sion we will use the deuteron as the spin-1 particle,
with the understanding that everything in the dis-
cussion holds just as well for other spin-1 particles.

The proof is straightforward. We first consider
the actual polarization analysis to establish the con-
text of the theorem and some notation. The densi-
ty matrix of the deuteron can be expanded into
zeroth, first, and second rank tensors which can be
expressed conveniently in Cartesian or spherical
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bases. 2 In the Cartesian basis these tensors are I,
px~ ~y~ ~zi ~~ pyy~ pzz~ +xy~ pyz~ and p~, where z is
the deuteron's momentum direction, for specificity.
The angular distribution of a rescattering or analyz-
ing reaction such as 3He(d, p)~He depends on all but

p, of the deuteron's various vector and tensor po-
larizations. Since p, is the only tensor of the
"wrong" parity which is independent of the angle
between the reaction plane and the analyzing plane,
it is excluded by parity conservation. However, the
contribution of a particular vector or tensor polari-
zation to the angular distribution depends on the
corresponding analyzing powers of the reaction,
A~(0), A~(()), A~(()) —A~(()), and A (()), where
l) is the center-of-mass (polar) scattering angle for
the analyzing reaction. For the 'He reaction, and
similar analyzing reactions, the vector analyzing
power A„(H) can be small in the energy region
below a few hundred megaelectronvolts, although
below 10 MeV it is sizable for He. Nevertheless,
the determination of the vector polarizations p„and
p„(as well as p„ trivially) may not be possible for
all relevant energies and angles. Measuring various
azimuthal asymmetries at several polar angles does
determine the tensor polarizations, nevertheless. 3

The tensor polarizations p~, p~„p~ —p~, p~,
and p correspond to the observables defined in the
optimal formalism as R+ —R, I+ —I, Ro, I,
and A = (+ + ) + ( ——) —2(00) (where the same
axes x, y, and z are understood). This latter nota-
tion allows us to quickly relate the tensor observ-
ables to the amplitudes of the master reaction, i.e.,
the reaction that produced the polarized deuteron.
To establish the method of proof for our theorem,
consider the simplest master reaction first, the reac-
tion with the spin structure 0+ 0 0+ 1. For such
a reaction there are three amplitudes, for helicities
+1, 0, and —1. We call these complex amplitudes
3, B, and C, respectively. Then the optimal ob-
servables for tensor polarization become

A= /A /z+ /C/z —2/B/ z (1)

R+ —R = Re(BC' AB'), —

I+ —I = Im(BC' —AB'),

Ro= ReAC',

I =ImAC',

(2)

(3)

(4)

(5)

and we also have ~A ~
+ IB I +

I C I, because that is
just the completely unpolarized differential cross
section. But we can see immediately that the above
expressions for the observables determine 3, B,
and C completely apart from a single overall phase
factor which of course is always arbitrary. From Eq.
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R+, —R„-, = X Re([B. C;, ,
aa bb'

]p( )p(t)) (g)

I+, I , = X Im[[B.~—C;-,
aa bb'

~p(a)p(b)I (g)

aa'bb'
(10)

I,', , = X mII[ .A„C,, , ] p)(p(,»I.
aa bb'

Each of the above quantities on the left-hand
sides represents a double density matrix element of
the two final particles in which the deuteron has a
certain tensor polarization and the other final parti-

(1) and the unpolarized differential cross section we
get ~

A j +
~
C ) and I B I . Then from this and Eqs.

(4) and (5) we completely determine A and C.
Thus we also know 3 —C, which then allows us,
through Eqs. (2) and (3), to also determine Bcom-
pletely. Discrete ambiguities are not necessarily
eliminated, however. (Certain of the above observ-
ables may be required to vanish by parity conserva-
tion and 3 C', B —B' leaves the equations
unchanged. )

When dealing with the general master reaction
involving a deuteron and any number of other par-
ticles with or without spin (some of which may also
be deuterons), the amplitudes and observables will

carry arguments for each of the participating parti-
cles. Let these amplitudes be D(c,a;d, I)) for which
we will write A,b„B,b„and C,b„where a, b, and c
label the spin projection eigenvalues of the incom-
ing particles a and b and of the other outgoing parti-
cle c, while A, B, and C still refer to the deuteron
helicities d =+1, 0, and —1, respectively. A gen-
eral observable in which both initial particles may
be polarized, as described by density matrix p '. ,
and p, , is given by an expression

D(c,a;d, b) p,', p&&
D'(c', a';d', b'). (6)

a,a', b, b'

The deuteron's tensor polarization parameters for
all other particles polarized (or not) in some partic-
ular way thereby are given by

A = x [AgbA
'

a,a', b, b'

+CbgC 'b' ' Bbc 'b' 'jpa 'pbb
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cle has polarization indices c and e, with the two in-
itial particles characterized by the initial density ma-
trices p ', and pbb, . Note that the vector polariza-

tions p„and p~ are equal to (R++R ), and

(I++ I ),„ for which the amplitude expressions

are of the same form as Eqs. (8) and (9) with rela-
tive plus signs. To prove the theorem, we need
only show that the (R+ + R ) and/or the
(I+ + I ) measurements are superfluous. This
must be the case, as we now show.

The initial density matrices are under our experi-
mental control, so choose p

' and p to be diago-
nal elements. Then for each c = c' (and the
prepared a=a', b=b') the A,~„B,~„and C,~ can
be determined by the same procedure used for Eqs.
(1)—(5). For each set of indices, ( a, b, c), the rela-
tive phases among A, B,C are fixed thereby. To fix
the five relative phases of A, B,C from one set
( a, b, c, ) to another ( a, b, c' }, an off-diagonal
(c& c') observable from among Eqs. (7)—(11)
must be measured as well [e.g. , Eq. (11) deter-
mines the phase between A,b, and C,]. Repeat-

ing this process for each c and then a & a' and
b & b' completes the phase specification and, there-
fore, by construction, the proof.

Alternatively note that A,b„B,b„and C,b, corre-
spond to three "vectors" in the a & b & c "complex
vector space" and the five observables correspond-
ing to tensor polarization are therefore scalar prod-
ucts of a particular kind [with metric given by
pl )x pl )x (c,c )]. From this point of view there
are only six independent scalar products of the A,
B, and Cmultidimensional complex vectors, one of
which will be the sum over the deuteron polariza-
tion. Of the remaining five scalar products, all will

be combinations of the five generally independent

linear combinations contained in the observables of
Eqs. (7)-(11). That those observables are in gen-
eral independent can be verified straightfowardly by
evaluating the Jacobian for those quantities.

As a corollary, note that if one of the initial-state
particles is also spin 1, then for each observable of
Eqs. (7)-(11) it suffices to measure only those den-
sity matrix elements corresponding to tensor polari-
zation to get all necessary information for that ob-
servable. Thus vector polarization for the deuteron
is not needed for obtaining a complete description
of an arbitrary reaction involving deuterons. In
practice, a determination might still be made that
measuring vector polarization may be easier and
preferable to measuring some of the tensor polari-
zation quantities, but if this is not the case, we now
know that one can get by for all conceivable pur-
poses without measuring vector polarization.
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