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Representation of the Potential in the Schrodinger Equation
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Results from the solution of the inverse-scattering problem in three dimensions are used
to obtain representations of the potential and of the zero-energy wave function in terms of
the scattering amplitude, the bound states, and the positive-energy wave functions. Some
simple consequences are derived.
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The solution of the inverse-scattering problem in one dimension has led to a well-known representation
of the integral of the potential in terms of the reflection coefficient, the bound states, and the scattering wave
function, a representation that may be regarded as the inverse of that of the reflection coefficient in terms of
the potential and the wave function. 2 I wish to present here an analogous representation in three dimensions
and some of its consequences.

We start with the well-known relation between the scattering wave functions [t[+ and [t/, involving the S
matrix:

Q+( —k, —8, x) =Q (k, 8, x) = jtd8'S( —k, —8, 8')Q+(k, 8', x).
Here k = (2mE) '~2 is the wave number, 8 is a unit vector in the direction of the momentum, x C 8,

S(k, 8, 8') =5(8,8') —(k/2m i)A (k, 8, 8'),

where A is the scattering amplitude, and p
—are normalized to approach exp(ik8 x) as

~
x

~
(xy. Defining

y(k, 8, x) —=P+ (k, 8, x)exp( —tk8 x) we may write Eq. (1) in the form

y( —8, —8, x) =y(k 8, x) —(8/2xi) f dH' d ( —k 8, 8')e(k 8, 8'. x). (2)

where

u( , k, 88x) —= [t[+(k, 8', x)exp( —ik8 x).
The Fourier transform of y —1,

j(,e, x)=(1/2x)f dke '8 [y(ke, x) —1[,

therefore satisfies the equation
OO

g(n, —8, x) —((—n, 8, x) = J dk k)td8'e[k A( —k, 8, 8')v(k, 8, 8', x).
(22r )'

Regarded as a function of k, y —1 is in L ( —~, ~), it is the boundary value of an analytic function mero-

morphic in C+, and it tends to zero as ~k~ ~ there. 3 Together with the fact that 1I/+ satisfies the
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Schrodinger equation with the potential V(x), these properties lead to the relations

Iim/(n, 0, x) —= ((0—) = XY~( —0) u~(x)exp(K„0 x)/(2K„)
at0 n, b

and

V(x) = —20 V[/(0+, 0, x) —f(0 —,0, x)].

(4)

Here —~~z are the bound-state eigenvalues, if any, of —5+ V(x), u„(x) are the corresponding normalized
eigenfunctions, and Y~(0) are their characters. 5 In the absence of bound states the right-hand side (rhs) of
(4) vanishes. Alternatively, 6

Jl dr V(x —0r) =2/(0 —,0, x) —2$(0+, 0, x). (5')

The implied independence of the rhs of (5) of the direction 0 is the "miracle. "3 4 6

Insertion of (3) and (4) in (5) yields the representation7

V(x) =0 V](2mzi) tJt dk kJl d0'A( —k, 0, 0')exp( —ik0 x)[c[+(k,0', x)

+ —,
' X~„'u„(x)[Y„(—0)exp(~„0 x) —Y„(0)exp( —K 0' x)]], (6)

n, b

which is the three-dimensional generalization of a well-known expansion in one dimension. It may be re-
garded as an inversion of the familiar formula

A(k, 0, 0') = —(I/4m)JI d3x V(x)exp( —ik0 x)(c(+(k, 0', x).

Of course, there is an analog of (6) obtained from (5') rather than (5).
If differentiation under the integral sign is justified, then the Schrodinger equation

(b +2ik0 V —V)v(k, 0, 0', x) =0

leads to the equation

(~- V)1.=0,
where

I'(x) =1+ (2n)-'JI dkJtd0'A ( —k 0, 0')v(k, 0, 0', x)

+ 2 XK~ M„(x) [ Y„(0)exp( —K„0 x ) + Y„(—0)exp(K 0 ' x) ].
n, b

Since I'(x) 1 as ~x~ ~, I'(x) equals the zero-energy scattering wave function, I'(x) =[Ci+(0, 0,x)
(0, 0,x), which is independent of 0.

If we define

(t[(k, 0, x) —= Q+(k, 0, x)A(x), v~(x) = u~(x)A(x), A(x) —= 1/I'(x),

then

A(x) =1—(27r) 2Jl dkJtd0'A ( —k, 0, 0')exp( —ik0 x)(t[(k, 0', x)

——,'XK„'v~(x)[Y~(0)exp( —K„0 x)+ Y~( —0)exp(K„0 x)],
n, b

(9)

and the Lippmann-Schwinger equation for Q reads

skfx —y /

4(kH, x)=e'~~'*+(2w) 'Jd'y ['7(nA(y)] vt((ke, y).lx- yl
(10)

The nonlinear system (9) and (10) may be regarded as an alternative formulation of the inverse-scattering
problem.

A simple consequence of the fact that I"(x) is equal to the zero-energy wave function, and therefore
Jd x V(x)I (x) = —4m. A (0), is obtained by multiplying (8) by V(x) and integrating over all x. The result
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1s

Jt dk cr(k, 8) =
2 mJtd3x V(x)+2m2A (0)+ T'vr

where A (0) = A (0, 8, () ') is the zero-energy scatter-
ing amplitude (which is independent of 8 and 8'),
and o. (k, 8) = fdic'iA (k, t)', 8)i is the total cross

section for scattering from the incident direction 0.
The sum rule (11) is not new; it can be obtained al-

ternatively as the zero-energy limit of a forward
dispersion relation. However, it has a remarkable

property that appears to have gone unnoticed It
implies that if there are no bound states then the in-

tegral on the lhs must be independent of 0. On the
other hand, if V produces bound states then the in-

tegral on the lhs generally will depend on 0, as
shown by the sum on the rhs. This may be regard-
ed as a directly observable consequence of the
"miracle. " For central potentials, of course,
o.(k, &) is independent of 8. In that case the char-
acters are spherical harmonics, and the m degenera-
cy leads to a sum on the rhs that is also independent
of 0.
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