PHYSICAL REVIEW

LETTERS

VOLUME 53

12 NOVEMBER 1984

NUMBER 20

Representation of the Potential in the Schrödinger Equation

Roger G. Newton

Physics Department, Indiana University, Bloomington, Indiana 47405 (Received 31 August 1984)

Results from the solution of the inverse-scattering problem in three dimensions are used to obtain representations of the potential and of the zero-energy wave function in terms of the scattering amplitude, the bound states, and the positive-energy wave functions. Some simple consequences are derived.

PACS numbers: 03.65.Nk

The solution of the inverse-scattering problem in one dimension has led to a well-known representation¹ of the integral of the potential in terms of the reflection coefficient, the bound states, and the scattering wave function, a representation that may be regarded as the inverse of that of the reflection coefficient in terms of the potential and the wave function.² I wish to present here an analogous representation in three dimensions and some of its consequences.

We start with the well-known relation between the scattering wave functions ψ^+ and ψ^- , involving the S matrix:

$$\psi^+(-k,-\theta,\vec{\mathbf{x}}) = \psi^-(k,\theta,\vec{\mathbf{x}}) = \int d\theta' S(-k,-\theta,\theta') \psi^+(k,\theta',\vec{\mathbf{x}}).$$
(1)

Here $k = (2mE)^{1/2}$ is the wave number, θ is a unit vector in the direction of the momentum, $\vec{x} \in R^3$,

$$S(k,\theta,\theta') = \delta(\theta,\theta') - (k/2\pi i)A(k,\theta,\theta'),$$

where A is the scattering amplitude, and ψ^{\pm} are normalized to approach $\exp(ik\theta \cdot \vec{x})$ as $|\vec{x}| \rightarrow \infty$. Defining $\gamma(k,\theta,\vec{x}) \equiv \psi^+(k,\theta,\vec{x})\exp(-ik\theta \cdot \vec{x})$ we may write Eq. (1) in the form

$$\gamma(-k,-\theta,\vec{\mathbf{x}}) = \gamma(k,\theta,\vec{\mathbf{x}}) - (k/2\pi i) \int d\theta' A(-k,\theta,\theta') \nu(k,\theta,\theta',\vec{\mathbf{x}}),$$
(2)

where

 $\nu(k,\theta,\theta',\vec{\mathbf{x}}) \equiv \psi^+(k,\theta',\vec{\mathbf{x}})\exp(-ik\theta\cdot\vec{\mathbf{x}}).$

The Fourier transform of $\gamma - 1$,

$$\zeta(\alpha,\theta,\vec{\mathbf{x}}) = (1/2\pi) \int_{-\infty}^{\infty} dk \ e^{-ik\alpha} [\gamma(k,\theta,\vec{\mathbf{x}}) - 1],$$

therefore satisfies the equation

$$\zeta(\alpha, -\theta, \vec{\mathbf{x}}) - \zeta(-\alpha, \theta, \vec{\mathbf{x}}) = \frac{i}{(2\pi)^2} \int_{-\infty}^{\infty} dk \ k \int d\theta' \ e^{ik\alpha} A(-k, \theta, \theta') \nu(k, \theta, \theta', \vec{\mathbf{x}}).$$
(3)

Regarded as a function of $k, \gamma - 1$ is in $L^2(-\infty, \infty)$, it is the boundary value of an analytic function meromorphic in C^+ , and it tends to zero as $|k| \to \infty$ there.³ Together with the fact that ψ^+ satisfies the

Schrödinger equation with the potential V(x), these properties lead to the relations⁴

$$\lim_{\alpha \downarrow 0} \zeta(\alpha, \theta, \vec{\mathbf{x}}) \equiv \zeta(0-) = \sum_{n, b} Y_n^b(-\theta) u_n^b(\vec{\mathbf{x}}) \exp(\kappa_n \theta \cdot \vec{\mathbf{x}}) / (2\kappa_n)$$
(4)

and

$$V(\vec{\mathbf{x}}) = -2\theta \cdot \nabla [\zeta(0+,\theta,\vec{\mathbf{x}}) - \zeta(0-,\theta,\vec{\mathbf{x}})].$$
(5)

Here $-\kappa_n^2$ are the bound-state eigenvalues, if any, of $-\Delta + V(\vec{x})$, $u_n^b(\vec{x})$ are the corresponding normalized eigenfunctions, and $Y_n^b(\theta)$ are their characters.⁵ In the absence of bound states the right-hand side (rhs) of (4) vanishes. Alternatively,⁶

$$\int_0^\infty dr \ V(\vec{\mathbf{x}} - \theta r) = 2\zeta(0 - \theta, \vec{\mathbf{x}}) - 2\zeta(0 + \theta, \vec{\mathbf{x}}).$$
(5')

The implied independence of the rhs of (5) of the direction θ is the "miracle."^{3,4,6}

Insertion of (3) and (4) in (5) yields the representation⁷

$$V(\vec{\mathbf{x}}) = \theta \cdot \nabla \{ (2\pi^2 i)^{-1} \int_{-\infty}^{\infty} dk \ k \int d\theta' A \ (-k, \theta, \theta') \exp(-ik\theta \cdot \vec{\mathbf{x}}) \psi^+ (k, \theta', \vec{\mathbf{x}}) + \frac{1}{2} \sum_{n, b} \kappa_n^{-1} u_n^b(\vec{\mathbf{x}}) [Y_n^b(-\theta) \exp(\kappa_n \theta \cdot \vec{\mathbf{x}}) - Y_n^b(\theta) \exp(-\kappa_n \theta \cdot \vec{\mathbf{x}})] \},$$
(6)

which is the three-dimensional generalization of a well-known expansion in one dimension.¹ It may be regarded as an inversion of the familiar formula

$$A(k,\theta,\theta') = -(1/4\pi) \int d^3x \ V(x) \exp(-ik\theta \cdot \vec{x}) \psi^+(k,\theta',\vec{x}).$$

Of course, there is an analog of (6) obtained from (5') rather than (5).

If differentiation under the integral sign is justified, then the Schrödinger equation

$$(\Delta + 2ik\theta \cdot \nabla - V)\nu(k,\theta,\theta',\vec{\mathbf{x}}) = 0$$

leads to the equation

$$(\Delta - V)\Gamma = 0, \tag{7}$$

where

$$\Gamma(\vec{\mathbf{x}}) = 1 + (2\pi)^{-2} \int_{-\infty}^{\infty} dk \int d\theta' A(-k,\theta,\theta') \nu(k,\theta,\theta',\vec{\mathbf{x}}) + \frac{1}{2} \sum_{n,b} \kappa_n^{-2} u_n^b(\vec{\mathbf{x}}) [Y_n^b(\theta) \exp(-\kappa_n \theta \cdot \vec{\mathbf{x}}) + Y_n^b(-\theta) \exp(\kappa_n \theta \cdot \vec{\mathbf{x}})].$$
(8)

Since $\Gamma(\vec{x}) \to 1$ as $|\vec{x}| \to \infty$, $\Gamma(x)$ equals the zero-energy scattering wave function, $\Gamma(x) = \psi^+(0,\theta,x) = \psi^-(0,\theta,x)$, which is independent of θ .

If we define

$$\phi(k,\theta,\vec{\mathbf{x}}) \equiv \psi^+(k,\theta,\vec{\mathbf{x}})\Lambda(\vec{\mathbf{x}}), \quad v_n^b(\vec{\mathbf{x}}) \equiv u_n^b(\vec{\mathbf{x}})\Lambda(\vec{\mathbf{x}}), \quad \Lambda(\vec{\mathbf{x}}) \equiv 1/\Gamma(\vec{\mathbf{x}}),$$

then

$$\Lambda(\vec{\mathbf{x}}) = 1 - (2\pi)^{-2} \int_{-\infty}^{\infty} dk \int d\theta' A(-k,\theta,\theta') \exp(-ik\theta \cdot \vec{\mathbf{x}}) \phi(k,\theta',\vec{\mathbf{x}}) - \frac{1}{2} \sum_{n,b} \kappa_n^{-2} \upsilon_n^b(x) [Y_n^b(\theta) \exp(-\kappa_n \theta \cdot \vec{\mathbf{x}}) + Y_n^b(-\theta) \exp(\kappa_n \theta \cdot \vec{\mathbf{x}})],$$
(9)

and the Lippmann-Schwinger equation for ϕ reads

$$\phi(k,\theta,\vec{\mathbf{x}}) = e^{ik\theta\cdot\vec{\mathbf{x}}} + (2\pi)^{-1} \int d^3y \frac{e^{ik|\vec{\mathbf{x}}-\vec{\mathbf{y}}|}}{|\vec{\mathbf{x}}-\vec{\mathbf{y}}|} [\nabla \ln\Lambda(\vec{\mathbf{y}})] \cdot \nabla\phi(k,\theta,\vec{\mathbf{y}}).$$
(10)

The nonlinear system (9) and (10) may be regarded as an alternative formulation of the inverse-scattering problem.

A simple consequence of the fact that $\Gamma(\vec{x})$ is equal to the zero-energy wave function, and therefore $\int d^3x V(x)\Gamma(x) = -4\pi A(0)$, is obtained by multiplying (8) by $V(\vec{x})$ and integrating over all \vec{x} . The result 1864

is⁸

$$\int_{0}^{\infty} dk \, \sigma(k,\theta) = \frac{1}{2} \pi \int d^{3}x \, V(\vec{x}) + 2\pi^{2} A(0) + \frac{1}{2} \pi \sum_{n,b} \kappa_{n}^{-2} Y_{n}^{b}(\theta) \, Y_{n}^{b}(-\theta),$$
(11)

where $A(0) = A(0, \theta, \theta')$ is the zero-energy scattering amplitude (which is independent of θ and θ'). and $\sigma(k,\theta) = \int d\theta' |A(k,\theta',\theta)|$ is the total cross section for scattering from the incident direction θ . The sum rule (11) is not new; it can be obtained alternatively as the zero-energy limit of a forward dispersion relation.⁹ However, it has a remarkable property that appears to have gone unnoticed:¹⁰ It implies that if there are no bound states then the integral on the lhs must be independent of θ . On the other hand, if V produces bound states then the integral on the lhs generally will depend on θ , as shown by the sum on the rhs. This may be regarded as a directly observable consequence of the "miracle." For central potentials, of course, $\sigma(k,\theta)$ is independent of θ . In that case the characters are spherical harmonics, and the m degeneracy leads to a sum on the rhs that is also independent of θ .

This work was supported in part by Grant No. PHY8403827 from the National Science Foundation.

¹See, for example, F. Calogero and A. Degasperis, *Spectral Transform and Solitons* (North-Holland, Amsterdam, 1982), p. 21, Eq. (3).

²See, for example, F. Calogero and A. Degasperis, *Spectral Transform and Solitons* (North-Holland, Amsterdam, 1982), p. 21, Eq. (7).

³R. G. Newton, J. Math. Phys. (N.Y.) 21, 1698 (1980).

⁴R. G. Newton, J. Math. Phys. (N.Y.) **23**, 594 (1982). Note that the rhs of the equation on line 27 in the lefthand column of p. 597 lacks a factor of $1/2\kappa_m$. We assume that k = 0 is not an exceptional point.

⁵Section 5 of Ref. 3.

⁶R. G. Newton, in *Conference on Inverse Scattering: Theory and Applications* (SIAM, Philadelphia, 1983), pp. 1–74.

⁷It is easy to show that in (6) it is immaterial whether the integral is taken as the limit of the rhs of (3) as $\alpha \downarrow 0$ or $\alpha \uparrow 0$.

⁸Equation (5.6) of Ref. 3 has been used here.

⁹See, for example, J. R. Taylor, *Scattering Theory* (Wiley, New York, 1972), p. 294, Eq. (15.13).

¹⁰The reason is simply that (11) was derived in the past only for central potentials.