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Intermittency and Solitons in the Driven Dissipative Nonlinear Schrodinger Equation
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The cubic nonlinear Schrodinger equation, in the presence of driving and Landau damp-

ing, is studied numerically. As the pump intensity is increased, the system exhibits a transi-
tion from intermittency to a two-torus to chaos. The laminar phase of the intermittency is
also a two-torus motion which corresponds in physical space to two identical solitons of arn-

plitude determined by a power-balance equation.

PACS numbers: 52.35.Mw, 02.50.+s, 52.35.Ra

In this Letter, we present new results of a numer-
ical study of the transition to chaos in a driven,
damped, cubicly nonlinear Schrodinger (NLS)
equation. We believe that this work bears on a
variety of important relationships pervading current
studies of stochasticity, such as the contrasting
behavior between dissipative and Hamiltonian sys-
tems, the differences between systems with a few
degress of freedom and with many degrees of free-
dom [i.e., partial differential equations (PDE's)],
and the relationship between highly coherent non-
linear excitations, such as solitons or solitonlike
structures, and states which exhibit intrinsic chaos.
We elucidate these differences as follows.

The undamped NLS (with appropriate initial and
boundary conditions)'2 possesses, among its solu-
tions, a finite-energy bound state of W solitons of
incommensurate amplitudes, whose space trajec-
tories lie on an N torus. If we imagine a se-
quence of progressively increasing total energies for
such a state, then N increases, and arbitrarily com-

rk g[5-akk+50k+5akk] Yk

yk=(m/8e')'')k) 'exp(-k '/2).

(1b)

(lc)

In plasma physics this equation constitutes one
idealized model of externally excited Langmuir
wave turbulence, in which 3 is the complex ampli-
tude of the wave field Re[A exp( —itopt)]. The
dimensionless variables, t,x, k,A, are related to the
dimensional variables t,x, k,A by t=cu~t, x=kDx,
k= k/kn, and A2=A 2/32mn0„where .

co~ is the
electron plasma frequency, kD the Debye wave

number, and n and 0, the electron density and tem-
perature. The Landau damping, '

yk, becomes
strong as k increases. The driver strength is rnea-
sured by the (stochasticity) parameter g. Only

long-wavelength modes are driven. The cubic non-

I [A, —]I' r (x —x')A (x', t) dx'] + —', A + IA I'A = O,

where the Fourier transform of the dissipation I is

plicated motions can be built up. Such an evolution
would be in accord with Landau's5 conjectures on
transitions to turbulence. However, our present
analysis of the driven, damped NLS shows (as do
other studies6 7 of PDE's) a transition from a two-
torus directly into chaos, with increased driver
strength. This result is not seen in studies of a
highly truncated driven, damped NLS equation,
which exhibits a different route to chaos —the
Feigenbaum sequence of period-doubling bifurca-
tions. Of perhaps more importance, we find, for
lower driver strengths, that the regular (two-torus)
motion is punctuated by intermittent bursts of
chaos.

Whereas recent studies of the NLS found sto-
chastic behavior in a few parameters which charac-
terize an assumed soliton in the limit of weak driv-

ing and damping, we do not impose such a weak-
ness condition, and find that an intermittent or per-
manent transition to chaos is accompanied by the
complete destruction of a solitonlike state.

The equation that we study is

(la)

linearity in Eq. (1) corresponds to an adiabatic ion-
density response to the ponderomotive force of the
Langmuir waves. Such a response might be ap-
propriate to a weakly driven plasma in which ion-
acoustic waves are heavily damped (i.e. , T; = T, ).
A more general ion response is described by the
driven, dissipative Zakharov equation.

We have solved Eq. (1) subject to periodic boun-
dary conditions. The complex amplitude A (k, t) is
expanded into the Fourier series,

63
A (x, t) = (Ak/2m) X a„(t)e

n= —63

The grid spacing, Ak, is set equal to 3.33& 10, in
our units. The initial condition is a flat spectrum of
random-phased "noise, " of order of magnitude
3x10 . Several derived quantities that we con-
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FIG. 1. Energy of the system, as a function of time,
for three different values of g. I; denotes a laminar

phase and Ci a chaotic phase.
O

X

+
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sider here are the energy, E ( t) = (b, k/27t )
x g„lak(t) l, the dissipation spectrum, D(k, t)
=y(k) lak(t) l, the rate of power loss, P,„,(t)= (b, k/ 27r) $k D(k, t), and the rate of power in-

put, P;„=g(b, k/27r) $k= +ak p lak(t) l

The total energy of the system, as a function of
time, is displayed in Fig. 1 for three different values
of g. For gbetween 0.5x10 and 0.94x10, we
observe the intermittent behavior of Fig. 1(a).
After a sudden increase of energy, there occurs a
short "burst" of chaos (labeled Ct), confirmed by
positive local Lyapunov number. This is followed
by a regular motion (laminar phase, labeled Lt).
Many such sequences of chaotic bursts and regular
motions are observed. At the critical value, go
=0.94x10, this intermittency is completely re-
placed by a persistent laminar motion [Fig. 1(b)].
For g~ go=1.2x10 we observe a permanently
irregular behavior as depicted in Fig. 1(c).

Trajectories in a reduced phase space are studied
by making use of reduced maps (defined in the cap-
tion of Fig. 2) for each dynamic regime. In the in-
termittent regime, the map of Fig. 2(a) [encom-
passing both laminar (L2) and burst phases (C3) of
Fig. 1(a)] displays a closed curve during the laminar
phase and the scattered dots during a burst. This
suggests that the intermittent-phase dynamics ob-
served here consists of two weakly attracting solu-
tions, one of which appears to be a two-torus
motion, and the other a chaotic motion. The return
map [Fig. 2(a)] taken only from the torus depicts
two areas of accumulation of points along a diago-
nal, reminiscent of studies of intermittency for the
Belousof-Zahbotinsky reaction. " Figure 2(b) illus-
trates a two-torus found for g & go. The wispy
"thickness" becomes more pronounced as g g&,
and w'e believe that it may be a strange attractor.

F
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FIG. 2. (a) Intermittent regime, g = 8 && 10 ': The

left-hand map is constructed by plotting la5(t„)l vs
laq(t„+t) l. t„ is the time whenever la7(t„) l

=0.98 and
dl a7l/dt & 0 during 41 x 10+5( t ~ 58 && 10+'. To
create the right-hand map, each successive point appear-
ing only on the torus section in the left-hand map is as-
signed an angle O„relative to the torus center. The re-
turn map is constructed by plotting tt„vs 0„+t. (b) Two-
torus regime, g= 1&&10 4: The left-hand map is made
by plotting lA (xp/4, t„) l

vs lA (xp/4, t„+t) . xp=7r/hk,
and t„ is the time defined by lA (xp, t„) =0.047 and
dlA l/dt & 0 in the interval 4.1&&10+5~t(6.6x10+'.
The right-hand figure is the corresponding return map.

There is no evidence of prior period-doubling bifur-
cations. The power spectrum (not shown) contains
sharp lines corresponding to the two-torus. As
g gi the valleys between these lines fill in con-
tinuously with noise.

Figure 3 illustrates the behavior of the solution
l 2 (x, t) l in real space, as a function of time, for the
weakly driven case, g= 8&10, which exhibits in-
termittency. Figure 3 (a) shows two solitonlike
structures of equal amplitude, while Fig. 3 (b)
demonstrates the destruction of these solitons dur-
ing an intermittent chaotic burst.

Much can be learned about the energetics, spec-
tra, and characteristic scale sizes during the laminar
interval, by making the heuristic assumption that
the observed saturated solitonlike structures have
the form of two noninteracting soliton solutions to
the undriven, undamped (i.e. , Hamiltonian) NLS
equation, namely,

&,(x) = Ap[sech(x —xp/2)/I sech(x+ xp/2)/I] —e'"', (2)
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In summary, we conclude that the motion of ~A ~

has undergone successive changes in state from in-
termittency to a two-torus to chaos. Intermittency
as a root to chaos has been discussed by Pomeau
and Manneville' for systems with a few degrees of
freedom, and has also been observed in PDE's. 7

The intermittency observed here, however, is fol-
lowed (as q is increased) by a two-torus motion
[Fig. 1(b)], which loses its stability to permanent
chaos [Fig. 1(c)]. We have shown that the mea-
sured spectrum in the laminar stage can be under-
stood analytically in terms of the spectrum of an an-
tisymmetric two-soliton state, even though this is a
driven, damped system. The amplitude of the soli-
tons is correctly set by the driver strength g, when
an approximate power balance is assumed. The sol-
iton spectrum reproduces the measured spectrum
between the injection and dissipation wave num-
bers, a range over which it varies by over three or-
ders of magnitude, and accurately determines the
wave number, kd;„, of maximum dissipation.
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