
VOLUME 53, NUMBER 19 PHYSICAL REVIEW LETTER.S 5 NOVEMBER 1984

Laser Lorenz Equations with a Time-Dependent Parameter
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We study the stability of the zero-intensity solution of the semiclassical laser equations
when the pump parameter increases linearly in time. Equivalently, we study the stability of
the trivial fixed point of the Lorenz equations when the Rayleigh number is increased linear-
ly in time. When the time-dependent parameter varies slowly, the stability domain is greatly
increased with respect to the stability domain derived under stationary conditions. This cor-
responds to a dynamical stabilization of an unstable stationary solution.

PACS numbers: 42.55.—f, 03.65.Sq, 05.70.ph

In many experimental studies of instabilities in
lasers and in lasers with a saturable absorber, the
control parameter is slowly varied in time. ' In a
recent study we have shown that this time depen-
dence may induce dramatic changes in the bifurca-
tion diagram derived under the assumption of a sta-
tionary control parameter. However, the complexi-
ty of the model prevented a study beyond a pertur-
bative approach. Therefore, we have considered a
simpler problem, i.e., the semiclassical laser model
in the mean-field limit with homogeneously
broadened two-level atoms in a resonant single-
mode cavity. This model is described by the follow-

ing equations:

E, = —E+ A v, v, = d ( —v + EF),

F, = dpi ( —F+1—Ev),
where E, v, and F are the reduced field amplitude,
atomic polarization, and inversion, respectively.
The pump parameter A is the control (i.e. , bifurca-
tion) parameter. The two decay rates d and d~~ are
the polarization and atomic-inversion decay rates,
respectively, measured in units of the cavity decay
rate. The change of variables

tion

E=v=F —1=0
when (1) is solved with the initial condition

E(0)=E « 1, v(0) =0, F(0) =1, (3)

corresponding to a small perturbation of (2).
Linearizing (1) around the trivial solution (2) yields

E, = —E+ vA,
(4)

v, = d( —v+E),
with E(0) = Eo « 1 and v(0) = 0. When A is con-
stant, a linear stability analysis of the trivial solution
E= v =0 of (4) leads to the characteristic equation

l '+ l (d+1) + d(1 —A ) = 0.

Hence, the trivial solution is stable if and only if
pm}

Suppose now that A varies slowly in time, i.e.,
A =A (et) —= A (t'). An important feature is that
even if A is time dependent, the trivial solution (2)
remains an exact solution of (1), and therefore we
can still use (4). The solution of (4) for E can be
written in the form

E=, v= F=1——
61/2 '

goal/2

cr=d ', b=d„td r=td,

transforms Eqs. (1) into the Lorenz equations.
Hence 2 can be freely interpreted as the reduced
Rayleigh number or the pump parameter and in
both cases it is the relevant control parameter. The
main difference is that 8 has to be positive whereas
2 can be negative as well.

We shall analyze the stability of the trivial solu-

1 t'E= X c, exp —
g, (s, e)ds,

j=1,2

where the gj are the two solutions of

g2+ g(d+ 1) + d(1 —A )

=e[(A/A)(g+1) —g], (6)

and the dot indicates a derivative with respect to t'.
Equation (6) is solved by a series in powers of e.
To dominant order we obtain goz+go(d+1)+
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d(1 —3)=0, which is exactly the characteristic
equation (5) except that now the time dependence
of 3 induces a time dependence of go. Consequent-
ly, the solution Ewill become unstable when

Jt gp(s) ds = 0. (7)

Let t be the time at which the stationary bifurcation
is reached, i.e. , A(t) =1. We can express the
dynamical stability condition (7) as

t

J( gg(s)dg= —
f~ go(s)ds. (8)

This equality expresses a balance between the "ac-
cumulated stability" from 0 to t (where gp & 0) and
the "accumulated instability" between t and t'
(where gp ) 0). In contradistinction with the con-
dition 3 = 1 which is a local property resulting from
the behavior of the characteristic root at the bifur-
cation point, we now have a nonlocal condition:
From (8) we see that t' will depend on the rates of
damping and divergence during the whole interval
0» t» t'. Furthermore, we necessarily have the
inequality t' & t, implying a delay of the dynamical
bifurcation. The explicit solution of (7) yields

D(t') = = (4n —3+4[—3n +19.5n —11.4375+12(l —n)3 2]' 2) =P(n) (9)
w(t) -w(o)

where n =4d[1 —A (0)]/(d+1)2. When n) 1, the solution of (6) is no longer an analytic function of e
and the relation (9) becomes invalid. The function Q(n) varies from 1 (near n=0) to —, (near n=1).
Furthermore, it is independent of the rate at which 3 varies, for sufficiently small e; it depends on a single
variable which combines the remaining two parameters, d and A (0). For the class of initial values A (0)
near the steady bifurcation, Q(n) = 1 and therefore

~(t')-~(t) =~(t)-~(0).
A similar result was obtained for a laser with saturable absorber.

The previous discussion offered an insight into the mechanism of the dynamical bifurcation, but it is re-
stricted by the fact that A was supposed to vary very slowly and the initial condition was limited by o. & 1. In
this problem we can bypass these limitations by constructing the exact solution of (4). Let A (t) = A (0) + bt

with arbitrary sweeping rate 0 & b & co. We transform (4) into a closed second-order differential equation
for v whose solution is

u(t) =Epm. b 't3d2 3exp[ —,' t(d+1)][A—i(xp)Bi(x)—Ai(x)Bi(xp)], (10)

in terms of the Airy functions of argument

x = x ( t) = ( bd) t (g ( t) d + [ ( d —1)/2] )
Finally, when o. & 1, the parameter xo diverges to
—~ and the asymptotic expansion of (10) becomes

and xp=x(0). We now analyze the solution (10)
in the limit b 0 and therefore x +~. When
a ( 1, we have xo —~ and

u(t) —exp( —,
' x' ' —t(d+1)/2), (16)

u ( t) —exp (
—,'x' ' —,' t (d+ 1) ——,

'
xp ') .—

Hence, u(t) will begin to diverge when x=x"
=x(t") given by

provided that Ai(xp) &0. The critical time t is
therefore given by

—', (x')'t' —t"(d+ 1)/2 = 0,

—', (x')' ' —,' t"(d+ 1) ——,
' (xp) ' '—=0. (12)

It is easy to verify that (12) is identical to the condi-
tion (7) and therefore leads to (9). For n= 1, we
have x0=0 and

u (t) —exp(t [ —,
' (bdt) ' —(d+ 1)/2]) . (13)

D(t") = [y(n) —n]/n,

where yis the root of

(18)

y3+ 3y2[l —n ——,
' ]+3y(1 —n)2+ (1—n)3=0,

Thus the critical time t' is now given by

bdt'= [—', (d+1)]',
which leads to

D(t") = —', .

(14)

(15)

which tends to —,'when o. 1. When n is large, y
diverges like

y = n+ (3n/2)'t'+ 0 (n' ').
When n = 1, both expressions (9) and (18)

reduce to the exact results (15). Therefore, the
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function D(t') is given in the entire domain by Eqs. (1), which we write in vector form as

z, = r(z, W (r) ) + 8G(z,a (r) ). (20)
(19)

Therefore, we see that D(t") is a function of a sin-
gle variable, o. , provided that 6 (& 1. This func-
tion is displayed in Fig. 1. Since n(d) = n(1/d), the
result (19) for the reduced delay holds for good and
bad cavities.

Of course when xo is negative, the condition of
divergence (17) holds if and only if xo is not an ex-
act zero of Ai(x) in which case v(t) remains a
bounded function of t forever.

The effect of delayed bifurcation can have in-
teresting applications. In the case of Eqs. (1), we
have verified that when we s~eep backward
(b & 0) starting from the nontrivial steady solution
E2 = A —1, the time-dependent solution closely fol-
lows the stationary solution and no significant delay
occurs around 3 =1. Hence in a back and forth
sweep there will be an hysteresis effect leading to
dynamically induced optical bistability.

In real experiments, spontaneous emission is al-
ways present and therefore the trivial solution is
never E=O, though the actual field amplitude is
very small. Since our previous analysis exploited
the property that E=O remains an exact solution
even when A =A (t), we have to verify if a small
departure from E = 0 does affect our results or not.
%e assume that the effect of spontaneous emission
can be described by adding a small perturbation to

2-

D(t j

In this equation, 6 measures the amplitude of the
correction brought in by spontaneous emission or
any other source of imperfection, and 6 is an O(1)
vector. When 5=0, Eq. (20) reduces to (1).

When A is time independent and 6 0, the per-
turbed steady branches z, (A, 5) approach the bifur-
cation branches z, (A, O). By using the method of
matched asymptotic expansions, 5 we can find the
steady-state solutions. In the vicinity of A = A, = 1,
they are approximated by

W =W, +sti'W +O(r),
z, (A, 5) =5'~ Pu+ O(5),

where u = (1, 1, 0) and the amplitude P is of order
one in 5.

For a time-dependent pump parameter, we con-
sider only small sweeping rates:

W(r) =~(0)+«.
The following two extreme cases are easily dealt
with: (i) When 0 & 8 « e the results of our previ-
ous analysis remain correct except in a small vicini-
ty of 2 (r'), provided that the initial condition satis-
fies

z(0, 8, e) =ez, =O(e).
(ii) When 0 & e « 8 the time-dependent solution
will follow the steady solution and no significant de-
lay will occur. Therefore we see that a small imper-
fection added to the trivial solution may neverthe-
less preserve the delayed bifurcation for a class of
sweeping rates and initial conditions.
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FIG. 1. Normalized delay vs n which is proportional to
—W (0).

1820

iN. J. Halas, S.-N. Liu, and N. B. Abraham, Phys. Rev.
A 28, 2915 (1983).

2E. Arimondo, F. Casagrande, L. A. Lugiato, and
P. Glorieux, Appl. Phys. B 30, 57 (1983).

3T. Erneux and P. Mandel, Phys. Rev. A, to be pub-
lished.

4E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).
~B. J. Matkowsky and E. L. Reiss, Soc. Ind. Appl.

Math. J. Appl. Math. 33, 230 (1977).


