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We show that the quark mixing matrix can be parametrized in exactly unitary forms with
the imaginary parts present only at the order of 10 . With s„=si and s„well determined,
measurements of ~' or other CP-nonconservation effects can determine s, s~. Then after
I v„q I

= s, is measured, s& is known. We also give a simple expression for the CP asymmetry
in the B -B mixing.

PACS numbers: 11.30.Er, 12.10.Ck

The recent measurements of the b lifetime' have put a very strong constraint on the Kobayashi-Maskawa
quark mixing2 matrix. The salient features are that the weak transitions in the heavier quark sector (b ~ c
and t s) are much more suppressed than those in the lighter quark section (s~ u and c d), e.g. ,
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Note that some matrix elements have comparable real and imaginary parts, e.g. , V+. However, we have cal-
culated various violations of CP conservation; it is always a smail number proportional to 52S3sz. Recently it
has been shown by Wolfenstein that by reparametrizing the KM matrix one can see that the imaginary parts
in the whole KM matrix appear only with coefficient 10 . Nevertheless, the scheme used in Ref. 5 is by
a power series expansion, and not exact. Here we first show that the original KM matrix, by redefinition of t
and b quark field phases, can be put into an exactly unitary expression so that the imaginary parts only appear
in the matrix element of order & 10

We can redefine the phases of the t quark field and the b quark field by exp(i$, ) and exp( —iQb), respec-
tively, such that the new V,b and V„become real, i.e. ,
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Now let us study to what order of magnitude the imaginary parts begin to appear in the matrix V'. Since sl,
s2, and s3 are small, s2 —s3 —st —10, we can approximate ct = 1 —s, /2+ O(10 ), c2 —c3 = 1
+ O(10 4). Then Eq. (3) becomes
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We note that the transformed matrix elements are all real up to order O(10 ). This indicates that although
the original KM matrix elements can have large imaginary parts, they do not give appreciable CP-
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nonconservation effects. Here we have shown the point made by Wolfenstein in an exactly unitary form.
Though V contains the points made by Wolfenstein, it is still not in a neat form. After some trials we find

another way to parametrize the 3 x 3 unitary KM matrix, i.e.,
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Now from the measurements of the b lifetime and
I V„b/ V,b I

~ 0.14, and from Ref. 4, we have via 0+ 0+ nuclear P decay. Now,

I V.b I
= s, ~ 6.96x 10-3, 8.24x 10

1.06 x 10 (7)
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1

=0.050, 0.059, 0.076,

for rb = 1.4, 1.0, 0.6 Psec, resPectively. Also sy is a
rather small number of order 10, in comparison
with s„(oforder 10 ) which is obtained from

I v I =s.[1+o(10-')]=o.23,

via hyperon and K,3 decays; and

I v~l =.„[1+o(io-") ] = o.973,

(9)

(10)

for v.
b =1.4, 1.0, 0.6 psec, respectively. Since s, is

very small and oforder 10, then we have

I v,bl = lsyc, l
= sy[1+ o(10 ")]

We keep the real parts and the imaginary parts ac-
curate up to 10 4 and 10 6, respectively. It is clear
that the CP-nonconservation imaginary parts appear
only with coefficients ( 10 in the whole matrix.

The sx, sy, s„and s~ are related to the original s1,
$2 s3 and sz of the KM matrix by

s„=st+ O(10 ),

sy (s2 + s3 +2S2S3cb)'i + O(10 ), (12)
sg s/s3p sysp $2sb + 0 (10 ).

These relations are graphically illustrated in Fig. 1.
It turns out that our parametrization is very close

to the Maiani parametrization. They differ by a
phase transformation to the t and b quark fields,
1.e.,
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The only disadvantage to using Maiani's phase convention is
coefficient of 10

Now we discuss some physical implications on
these new Parameters sx sy s„and s~. It is in-

teresting to note that the limits on the angles from
the b lifetime alone are already more stringent than
those from hyperon decays, s, ( 0.2. The current
bound is s, & 0.14sy + 10 Also these bounds
provide a stronger limit on I V«V„I,

I Vggl ~~ s~sy + sg ~~2$~sy, (i4)

I V«V„I ~2s„sysy=1. 15xlo ', 1.6xio ',

2.6x 10 (15)

that the imaginary parts in V,q and V„have a

for vb=1.4, 1.0, 0.6 psec, respectively, than previ-
ously obtained from KL p,

+
p, which gives

IRe( Vd V„) I ( 0.02, for m, —40 GeV based on the
FIG. 1. Graphical relations between the conventional

parametrization and our proposed parametrization.
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FIG. 2. The size of Xcp/si = sqs3ss = srs, s@/s„vs 5 for
~b = 0.6, 1.0, and 1.4 psec for various m& ~
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box diagram calculation.
It is also of interest to note that all CP-

nonconservation effects of first order in weak in
teractions, be it e' or the partial-decay-rate differ-
ence between the charged s, c, b, or t decays and
their CP conjugate processes, are proportional to a
universal factor X~p accurate up to 10 from the
quark mixing matrix,

+gP = S~ $2S3S~ = S„S S,S~. (16)

(Note that the CP mixing parameter e is a result of
second-order weak interaction. ) For the strange
and charm decays, the CP-nonconservation factors
from the quark mixing matrix are Im[( V„, V„q)
x (V„Vd)'] and Im[( V„, V,', )(V„d Vd)"], respec-
tively. For the b decays, they are Im[(V,bV;, )
&& ( V„b V" )'] or Im[( V,b V,d) ( V„t, V„'d)"], and for
the t decays they are Im[(V„V„;)(V„V„;)],~J,
where i,j= d, s, or b, and k = u or c. But it can be
easily shown, especially in our proposed parametri-
zation, that they are all equal to X~p with correc-
tions of order 10 8. This implies that in the study
of CP nonconservation we can never separate s3sz
or s, s&, so that s3 or s, need to be obtained from
other reactions. The nicest one is from the study of
I V„t, I

= s, = sts3. A candidate reaction is 8„
v, (here we choose 7 v, rather than p, v„ to

avoid suppressions from helicity conservation). Un-
fortunately the branching fraction of such decay is
very small, B,(B„rv,) & 7.4X10

In Fig. 2 we give the value of
Xcp/st = szs3ss = s„s,s&/s„determined from the b
lifetime and the fitting of e via the box diagram cal-
culation for various m, . The measurement of
e 0.02s2s3ss 0.02s~s, s~/s„will give us the value
of s, s& [since s„and s„are known, Eqs. (8) and (9),

but not s3sq since s2 is not yet determined indepen-
dently; here we see the advantage of using the s„,
s~, s„s& parametrization].

The CP nonconservation could also appear signi-
ficantly in the B -B mixing. ' " It is character-
ized by an asymmetry parameter

a (Bo) = P /P+,

where the time-integrated probability is

P+ Jt (8o Bo) +ti(Bo 8o)

(17a)

(17b)

with p denoting "probability. " For the neutral
mesons 8, (bs) and Bd(bd), we obtain simple ex-
pressions for a (8 ) in the context of the standard
model,

24~ m, c„s„s,s&

F(m, '/mi2v) m,
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a(Bd) = —a(8 )sr/(cxls s se'&I2), —
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Note that for neutral mesons our theorem Eq.

(16) only applies to the moment, say t=0, when
the particle is a definite Po or P, where P (Po)
denotes neutral mesons of any flavor, e.g. ,
ICo(E ), Do(D ), Bo(8 ). At later moments
P (P ) mix through second-order weak interactions
in the KM scheme and become mixed states of P
and P, in which case our theorem does not apply.
The phenomena pointed out in Ref. 12 belong to
this category.

The calculation, Eq. (18), ignores QCD correc-
tions. We also drop terms of order (m, /mt, ) in I'tz
or (m, /m, ) in MI2, which are verified numerically
to be negligible. The ranges of CP nonconserva-
tions4 are

a (Bd) —10 —10

—a(B,) —0.5X10 '-0.5X10

for m, & 100 GeV. The CP-nonconservation ef-
fects could give rise to the observable difference in
event rates between the p, +p, + and p, p, dimuons
originating from bb production in high-energy col-
lider experiments.
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