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Geometry, Topology, and Supersymmetry in Nonlinear Models
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Supersymmetric two-dimensional sigma models which include Wess-Zumino topological
terms are constructed, analyzed, and interpreted by means of torsion on the field manifold.
One-loop renormalization results are presented geometrically, revealing that an infrared
fixed point exists when the torsion parallelizes the manifold. The O(4)/O(3) model is used to
illustrate general results.
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Multivalued actions of the Wess-Zumino type'
are based on topological invariants in one higher
space-time dimension and shift by an integral multi-
ple of 2m under a symmetry transformation, there-
by leaving the functional measure invariant. They
have been studied in gauge theories, but their im-
pact on renormalization and their connection
to anomalies is perhaps more easily explored in
two-dimensional cr models. Conventional two-
dimensional cr models possess a rich geometry7
which evolves systematically under renormaliza-
tion. In certain supersyrnmetric models, however,
this evolution is prevented by special geometric
constraints and thus the associated P function van-
ishes identically. '

In this Letter, we investigate the geometrical sig-
nificance of the Wess-Zumino term in two-dimen-
sional o- models by constructing the supersym-
metric extension of such bosonic models. This ex-
tension highlights the presence of torsion on the
group manifold. For special finite values of the
coupling, the torsion parallelizes the manifold, "
i.e., the generalized curvature vanishes, and conse-
quently the theory has an infrared fixed point. Wit-
tens has previously noted the same P-function zeros
in the pure bosonic model. We find that these
zeros are also due to torsion parallelization. By way
of illustration, we focus on the familiar O(4)/O(3)
model, although more general results are given.

The conventional nonlinear O(4) model is ob-
tainable from a pure kinetic term (2)t, ) 'B„P'84'$'
(i = 0, 1, 2, 3), by resolving the constraint in group
space (Q'Pt= 1), to obtain

/t —(2)t&) —tJtd2x g bQ&ttdddQ yb

This Lagrangian is manifestly invariant under linear
vector O(3) (isospin) transformations, and is also
invariant under three nonlinear axial transforma-
tions. In infinitesimal form we have

5ya &ahab pc+ )tu (I y2) 1/2

The pion fields $' are Goldstone bosons of the axi-
al transformations, i.e., the projective coordinates
of O(4)/O(3);„,v;„. In geometrical language, the
above transformations correspond to isometrics of
the metric of the three-dimensional field manifold.

Similarly, resolving the constraint for the topo-
logical density in three space-time dimensions,
&t'""et/k'g'Q„g~Q„qh tl„g', one obtains a total diver-
gence. Through Gauss's law, this yields the Wess-
Zumino term in two space-time dimensions:

le = (NI12ee) fdexee"e, eBed'B„de

e.b = e.b,4'f (0'), (3)

f(x) = —,
' x [arcsinx' —(x —x )'/ ],

where f(0) =1, and N is an integer —the Chern-
Simons coefficient required by topology to make
the action well-defined modulo 2~N. I2 is again
manifestly isospin invariant, but under a general ax-
ial transformation it shifts by an integer multiple of
2m. For reasons to be explained, we shall call the
antisymmetric tensor e,b the "torsion potential. "

It is easy to verify that the infinitesimal axial
transformation is not an isometry of the torsion po-
tential. Shifting $ by such an axial transformation
induces a "gauge transformation" plus a standard
general reparametrization transformation on the
torsion potential:

g, gb, +bz (a, b =1,2, 3).
Sgaugeeub daPb r)bPa

~stg ab S,a~eh &,b ac

(4)
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where [ca )(a(I (t)&) & & and

p ) b& gt c(y/2+ y2f') (I y2)1/2

Consequently, the integrand in (3) transforms
under (4) by a total divergence: 2(]„(e""Pa(I„(t)').

Further note that the curl of e,b is itself a special
curl-free and divergence-free tensor associated with
the volume element (and group structure con-
stants) of the manifold:

e[ab;c] e[ab, c] abc Jg

where Jg=—(detgab)'/z= (1—(t)z) ' z, and I'(»
= gtg'gb, . Since e,b is divergenceless (5e = 0) and
so is its curl (5de =0), the Hodge-deRham opera-
tor' vanishes: Ae = (d5+ Sd) e = 0. Thus e,b is a
harmonic form.

Although Iq is invariant under naive parity rever-
sal x —x, as well as (t) —(t), I2 is only invariant
under the combination of both these symmetries, as
it has no terms with even numbers of pions.

The bosonic action in total is the sum of I& and I2

)e = (2X ) 'Jd x[g ged 9 d '+ -' ne""e eg d 'g d ] (6)

where we have defined n = N)2/4vr f.or future convenience. Written in this form, ' the theory is straightfor-
ward to supersymmetrize by superfield extension of (t).

Given a Riemannian metric and an antisymmetric tensor e,b, the following defines a supersymmetric
model for general-field manifolds. However, certain conditions are crucial for a topological interpretation:

(I)'= (t)'+ [][[['+(00/2) E', D(Ig'= (C['+ (I" iglctg') 0—+ (00/2) if'',
I, = (2l ) Jd x(d g/2)[g(tg), e

—
—, ne(tg) e]D@'()+ye)Dtg .

If [) is integrated out and the auxiliary fields are eliminated (relevant conventions and identities may be
found elsewhere'~), the supersymmetric Lagrangian reads

I = (2X ) 'Jtd x[g (I (t)'(I"(t) +ig,bQ'(PQ) + —,
'

ne, be""(I (t)'(I $

,' nr]„(ieab[[—dy3y"Q ) + —,
'

%abed((cg (I+y3)(t['[][ (1+y3)f ].
The antisymmetric tensor e,b serves as the potential for the torsion S,b„which is naturally incorporated

into the covariant derivatives and the corresponding curvature:

[b;] g [bl (~ [][) =(I ([[+(] ~ (bc)+~ ~ [bcl)~~~'

%abed Rabcd+ (S„—,S bd SacdS'bc)—+ g„(S'bd. c
—S'b, .d).

Here R,b,d is the conventional curvature constructed from the symmetric connection 1'~b,~.

Specializing to the O(4)/O(3) case, whose topology was discussed earlier, we have S,b, = ng'/2e, b„hence
S,b, d= 0, and 9P.,b,d = (1 —n )R,b,d Therefore.

I (O(4)/O(3)) (2g )
—lj)d2x[g g yaygy + ig y gy + nerve g gag yb

+ing' e,b, 'd„Q'Q y3y„p'+ —,
' (1—n )Rabcdp'Q'Q Q ], (10)

where D„(c[a is the conventional' torsionless covari-
ant derivative B„pa+I'(b, )d„$ (C['

Now note that for special values of the coupling
()(,z= +4m/N, i.e., n = + I) the generalized curva
ture vanishes, and therefore so do the four-fermion
couplings: The manifold has been parallelized. "
These couplings coincide with the zeros of the P
function in the pure bosonic model, 5 which we now
explain.

The renormalization of the geometry of the usual
supersymmetric o- model is well studied. ' By a
similar analysis using the background-field method

0
and Riemannian normal coordinates, we have com-
puted the one-loop divergences of the model de-
fined by I, in (7), for general g(,b) and e[,b]. We

1800

use the component form of the model as given in
(8) in order to discuss both the bosonic a. model
((Cg =—0) and the supersymmetric case concurrently.
Using dimensional regularization to evaluate mo-
mentum integrals in d space-time dimensions, we
find that all one-loop on-shell ultraviolet diver-
gences are removed by adding to the bare metric
and torsion potentials the following counterterms:

g,b' = [)[ /2'(2 —d)]A(ab),

', neab' = [)—[ /2m. (2 —d ) ]g [ab],

which involve both the symmetric and antisym-
metric parts of the generalized Ricci tensor with
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m (d/dM) (g, /Xz) = (2m ) tent
&

(13)

Accordingly, the geometry of the manifold en-
counters a fixed point when it is parallelized,
9'ab, d

= 0. For the O(4)/O(3) model, e.g. , we have
~,b=2(1 —n )g,b, and thus there is an uv fixed
point at A.2=0 and a nontrivial ir fixed point at
A.

z = i4n/N i This can be v. isualized in terms of the
effective hypersphere in Q' space which, for exam-
ple, shrinks with decreasing energy down to a fixed
critical radius.

Witten5 has argued that the purely bosonic model
is equivalent to a free-fermion theory at this in-
frared fixed point. Such an equivalence requires
M(d/dM) (g,b/A. ) =0 to all orders in perturbation
theory. While this has not been proved, we note
that parallelism of the manifold may be the crucial
ingredient needed to establish the ir fixed point to
all orders. It is not unreasonable to conjecture that
the extension to higher orders of the right-hand

torsion

(ab) =~ah+ ~ da~ cbr

(12)
A labl ~ ab;c.

Note that in the "harmonic gauge,
" i.e., when e'th,

=0, the second counterterm is e('1= [)t2/4m. (2
—d)]be, where b.e is the Hodge-deRham operator
acting on the torsion potential.

The presence or absence of the P terms in (8)
has no effect on (11) and (12). The one-loop
results are independent of the fermions in the
model, so that (11) applies to either the pure bo-
sonic or the supersymmetric version. This is a
well-known feature of the usual o- model, ' and is
true here for essentially the same reason (fermions
give a finite self-energy contribution to minimally
coupled vectors in two dimensions).

If the Wess-Zumino term in (8) has a topological
interpretation, we do not expect it to be renormal-
ized. This is true (to one loop) if and only if
N i,g=0, which means the torsion is a co-closed
form. ' We shall assume this in the following. It is
always true for the O(4)/O(3) model that 9F l,bl

=0,
even when +,b,d does not vanish [see the remarks
after Eq. (5)]. This is also true for general chiral
models. Indeed, we expect the topology for such
general chiral models to be unaltered by radiative
corrections to all orders.

However, in general we expect the geometry of
the manifold to change under radiative corrections.
In renormalization-group language, ' a shift in
mass scale alters the geometry to one loop by de-
forming the metric:

side of (13), or (11),will be expressible in terms of
products, traces, and covariant derivatives of the
generalized curvature.

We thank P. G. O. Freund for discussions on
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Note added. —After submitting this paper for
publication, we learned of an independent study by
J. Gates, C. Hull, and M. Rocek [SUNY Stony
Brook Report No. ITP-SB-84-53 (to be published)]
in which torsion is also introduced and the possible
symmetries of the classical theory defined by Eq.
(7) are investigated, but without considering quan-
tum effects. We thank J. Lukierski for calling our
attention to this report.
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