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Partition Function of the Three-Dimensional Zamolodchikov Model
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It is shown that the Zamolodchikov model on the cubic lattice of N sites is equivalent to a
spin model on a lattice of 2N sites with just two-spin and three-spin interactions. Together
with the known transfer-matrix commutativity, this implies that the partition function Z (for
N large) factors into a product of single-variable functions. These functions, and hence Z,
are calculated by using symmetry relations. The model appears to be a critical free-fermion
model.

PACS numbers: 05.50.+q, 11.15.Ha, 75.10.Jm

Zamolodchikov' proposed a solution of the
tetrahedron equations. From the point of view of
statistical mechanics these equations are the condi-
tions for two layer-to-layer transfer matrices to
commute. The author expressed Zamolodchikov's
solution as a spin model on the cubic lattice, and
verified that the tetrahedron equations are indeed
satisfied.

The Boltzmann weights of the model are real, but
some are negative. Despite this unphysical proper-
ty, it is still interesting to calculate the partition
function since this is presently the only three-
dimensional model that appears to be both nontrivi-
al and solvable. Here this is done by using the
commutation and factorization properties of the
transfer matrix together with symmetry properties:
The calculation is rather like the "399th" solution
of the Ising model. 4 5

Let W be the simple-cubic lattice with m layers
each of n sites, and N = mn sites in all. Impose cy-
clic boundary conditions and with each site i associ-
ate a spin o-, , with values +1. The partition func-
tion is

Z = Xl l Q,„&„8'(a I efg I bcd I h ),

where the product is over all elementary cubes;
a, . . . , h are the eight corner spins of an individual
cube, arranged as in Fig. 1, and W(aIefgIbcdIh) is
the Boltzmann weight of the cube; the sum is over
all values of the Nspins.

The values of 8' are given in Table I and Eqs.
(3.11)-(3.13) of Ref. 3. They depend on three an-
gles Pt, P2, and Ps, herein called 0t, 02, and 03, and
the associated quantities (i = 1, 2, 3)

2np = H1+ H2+ H3
—m, ni = HI

—np. (2)

It is natural to regard H1, H2, and H3 as the angles of
a spherical triangle. Then the 2n& are the spherical
excesses, and the sides are a1, a2, and a3, where

sinH1sinH2 cosa3 = cosH3+ cosH1cosH2 (3)
(similarly for at and a2). The aim here is to calcu-

y= (coctc2c3)

(= —,
' y( —,

' sin0s)'

tanhx = tat3, tany = t2/tt,

tanhx'= tt t2, tany'= to/t3,

2K1 = —x' —iy', 2K2 = x —iy,

(8)

(9)

2K3 = —x'+ iy', 2K4= x+ ly.
(10)

The key step in this working was the discovery

late the partition function per site

K = Z1/N (4)
in the large-lattice limit, when the H;, n;, and a; are
all real, nonnegative, and less than m. .

Let Y,bfg by any function of the four spina, a, f,
b, and g. Then the product in (1) is unchanged by
multiplying W(a. . .h) by

edhc gaea ~chbg

Y~fbg Ybhdy Yedfa
I

since each face of W acquires a Y function from
one of its adjoining cubes, and a canceling 1/ Yfrom
the other cube. Similarly, (1) is unchanged by mul-

tiplying 8'by

exp[in (af —ch+ dh —ag+ cg —df)/8]. (6)

The effect of doing both, with

Yafb =exp[in (ab+ f)(g —f)/8],
is to multiply the weights given in rows 3, 6, 7, and
8 of Table I of Ref. 3 by icd, ac, iac, and cd, respec-
tively. The new function 8'is unchanged by negat-
ing the top four spina a, f, b, and g (or the four bot-
tom spins e, d, h, and c). Also, when ap= n2= 0,

~(a I efg I bcd I h) = 8gfcb, (7)

so that from (1) and (4) it then follows that ~ = 1.
Let P, b

= —1 if a = b = —1, otherwise
= + 1. Write t, and c, for [tan(a;/2) ]' and
[cos(n&/2) ]tt2, respectively. Define
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'X,4,,,+,,~ exp[s (Kt ag + Kzbf+ K3dh+ K4ce) ],

where s takes the values + 1, and

D = 2m (af c—h) + (n —Ot) (cdeh —abfg) + 02(aecg —bhdf) + 83(bhcg —aedf) (12)

Just as the factors (5) and (6) cancel out of (1),
so does the factor exp(iD/8) in (11),and so we can
ignore it. We can regard s as a spin located at the
center of the cube, as in Fig. 1. From (1) and (11)
it follows that ( NZ is the partition function of a
bcc lattice of 2N sites, consisting of I and the body
centers of each cube. There are three-spin interac-
tions sIo-&o.k on the shaded triangles in Fig. 1, with
interaction coefficients Kt, . . . , K4. Since $„f

there are sign factors P„P,Q, ,P,,p,

associated with the edges denoted by heavy lines in
Fig. 1.

The coefficients E~, . . . , E4 are not indepen-
dent: If we set z = exp(ia3/2), v; = tanh2E;, and

T, = [tan(8, /2) ]'~' (l3)
it follows from spherical trigonometry that

vt = ZTt Tz, vz = —lzTz/Tt,

v3 = z T$ Tz, v4 = iz Tz/Tt,

+1+4+ +2+3 (14)
Since the a. spins in each layer interact only with

the s spins immediately above and below them (and
vice versa), the transfer matrix Tean be factored:

T= ("X(K3,K4) Y(Kt,Kz), (»)
where Xdepends on 0~, 92, and 03 only via the in-
teraction coefficients E3 and E4 of the lower shad-
ed triangles in Fig. 1; Y depends only on K~ and

Z =("Tr[R(v3)S(v,)] . (17)

The diagonal matrix R (v3) depends on Ot as well as
v3. We can exhibit this by writing it as R(v3 v4).
Similarly, we can write Sas S(vt, vz). Suppose that
T has a unique largest-modulus eigenvalue and let
r"(v3 v4) and S"(v&, vz) be the corresponding diag-
onal elements of R and S. Then, taking the limit of
m large and using (4), we obtain

E2.
For the moment regard 0~, and hence T~, as

fixed. Then v4= —iv3/Ttz, so that Xdepends on Hz

and 83 only via v3. Similarly, Ydepends on them
only via v~.

In Refs. 2 and 3 it was shown that the transfer
matrices of two models commute provided that
they have the same value of 0~. This property is
unchanged by the face and edge transformations in-
volved in replacing 8' by 8'and neglecting D in
(11). If we write Xas X(v3) and Yas Y(v, ), it fol-
lows that X(u) Y(v) commutes with X(u') Y(v'),
for all complex numbers u, v, u', and v'. Under
quite general conditions (in particular, provided
that the eigenvectors of T span its vector space), it
follows that there exist nonsingular matrices P, Q,
and diagonal matrices R (u) and S(v), such that

X(u) =PR(u)Q ', Y(v) = QS(v)P ', (16)

where P and Q are independent of u and v.
The relation Z = Tr Tm gives

K = (r (v3q v4) S (vt, vZ) . (18)

e cl

FIG. 1. A typical elementary cube of W, with corner
spins a, . . . , h, showing the center spin s introduced via
Eq. (11).

K=(r(v3 vz )S(vt, 'v4 ). (19)

Eliminating K between (18) and (19) gives an iden-

Thus K/g, which is a function of the three angles
0~, 02, and 83, factors into a product of functions of
only two variables. This property, together with
some simple symmetries of K, determines r, s, and
K.

From Ref. 3 it is readily seen that permuting 0&,

02, and 83 is merely equivalent to rotating the lattice
~, and so leaves K unchanged. More strongly, ~ is
unchanged by permuting o.o, o.&, o.2, and 0,3. The
interchanging of (t& and Hz in (18), using (15)-(17),
gives
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tity which must be true for all complex numbers v1,
v2, v3, and v4 (in appropriate domains) satisfying
(14). By taking logarithms and differentiating while

keeping v3 and v4 fixed, we can establish that there
exist single-variable functions f, g, h, and p such
that

The constants can then be determined by using
the o.p, . . . , n3 permutation symmetry and the re-
quirement that ~ =1 when o.p=o.2=0. The results
for f, g, and h are (to within multiplicative con-
stants)

f(v)=(l —v ) F (v )
r(u, v) =g(u)h(v)p(u/v),

s(u, v) =f(u)h(v ')/p( —u/v),

~=gf(v, )h(v )g(v, )h(v, ).
(20)

where I'+(x) =exp[iG+(x)/(4n )] and

(21)

The 01 83 interchange symmetry can now be
used to determine the functions f, g, and h to
within a few unknown constants. [The working is
technical and will be given in a later paper: It helps
to consider the case when the lengths a1, a2, and a3
and the area o.p are small —this is Zamolodchikov's
"static limit" —and to expand (20) to first order in

the length scale. ]

( ) )t' In(1+y) lny
3'

Finally, K is given by

in~ = Iny —$ (s) + L
&
+ L2+ L3,

where y is given by (8), s = (at+ a2+ a3)/2,

(22)

(23)

P(x) = X (sin2nx)/2n n2, L&=P(s —aj)+ [a in[2m n sin(8;/2)]+ (n —a;)lncos(8&/2)j/(2m).
n=1

This expression for K has )he required property
that it be unchanged by replacing the spherical tri-

angle by any of its colunar triangles, i.e., by per-
muting np, o.1, n2, and o.3. It also satisfies the "uni-
tarity condition" or "inverse relation, "Eq. (5.2) of
Ref. 2 (Z therein is our ~; Zt is ~ with all the
lengths of the spherical triangle negated). This re-
lation has been known for three years, but K has not
been derived from it because no information was
available on the analytic properties of K. This con-
trasts with two dimensions (where the inversion re-
lation plus simple analyticity assumptions provide a
quick way of calculating ~), 7 '0 and highlights the

importance of the analyticity properties in the
inversion-relation method.

In the isotropic case, where 2o.p=20, =0 =aI
= m/2 (for i = 1,2, 3), (23) gives

= 2 (2' '- 1)e' = 1.2480. . . ,

where G =0.915965. . . is Catalan's constant. This
fits well with recent numerical estimates. "

The occurrence of the integrals G+(x), and of
Catalan's constant, is strongly reminiscent of the
two-dimensional critical Ising and free-fermion
models. Indeed, if ~ is only two layers thick, the
Zamolodchikov model becomes a planar critical
free-fermion model. Recent numerical work" on a
more general model (one for which low-tem-
perature expansions can be obtained) suggests that
its spontaneous magnetization vanishes at the par-
ticular temperature corresponding to the Zarnolod-

I

chikov model. Altogether, it seems likely that the
Zamolodchikov model (for L infinitely thick) is
critical.

It also seems likely, as has been suggested by Za-
molodchikov' and Foerster, ' that the model is in
some sense a free-fermion model. Indeed, the
form (11) of W was discovered by considering the
plane through a, b, e, and h in Fig. 1, and noting
that for any fixed values of c, d, f, and g the func-
tion 8' was that of a planar free-fermion model'4
and hence of a checkerboard Ising model. ' '

Let 7, denote the product of the four spins
around a face r of W. Apart from sign factors the
weight function 8'is a function only of the six ~

spins on the faces of the cube in Fig. 1. Further,
the overall sign of the product in (1) depends only
on the 3N r spins in W (because it is unchanged by
negating all the cr spins in any horizontal or vertical
plane). It follows that we can express the Zamolod-
chikov model as a vertex model by using the spin

arrow transformation of Pearce and Baxter, '
giving

Z=xp(+)4p,
where the sum is over allowed arro~ configura-
tions, 4p is the product of vertex weights, and the
sign has to be calculated globally. This looks a little
like Bazhanov and Stroganov's "sum over
polygons" formulation of the three-dimensional
free-fermion model. '
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The s spins introduced via (11) are on a different
footing from the original o- spins. A transformation
that removes this asymmetry is to locate a spin p
(q) at the center of the front (back) face in Fig. 1,
and to set s =pq. Do this for all elementary cubes.
of W, identifying spins in the same position. (Thus
p is also associated with the cube in front of it: This
changes the boundary conditions, but is otherwise
permissible. ) If one notes that Q~, =P~,Qq„and
rotates the lattice, g Z becomes the partition
function of a spin model on a cubic lattice of 2N
sites, with pure four-spin interactions on vertical
faces only, Q, factors on all horizontal edges, and

in each vertical face a $, factor on one diagonal

(e.g. , top right to lower left) only. The sign factors
are important: Without them the model

would trivially factor into independent planar
checkerboard Ising models, being simply a checker-
board generalization of Suzuki's model. '9

There are many ways of writing (23): The author
is indebted to Professor M. L. Glasser for helping
to obtain what appears to be the simplest form.

«~Part of this work was performed while the author

was visiting the Istituto per 1'Interscambio Scientifico,
Torino, Italy.
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