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The Eden model in many dimensions is studied by an exact enumeration method. Our
result including the first-order 1/d correction has the asymptotic behavior (R„') —21n(n) (1
+3/2d), which does not agree with the naive expectation R —n'~~ [or d(n'~d 1)].—This
suggests that when n is large, (R„') might be a singular function of d. We also present a

result on the Cayley tree.

PACS numbers: 02.50.+s, 05.70.Ln, 68.70.+w

Recently there has been a great deal of interest in
the kinetic cluster growth problem, in particular in
the diffusion-limited aggregation (DLA) model
proposed by Witten and Sander. ' Most of the work
on this problem is based on computer simulations'
and on the study of "mean-field"-type equa-
tions. 34 There has also been an attempt to use
real-space renormalization-group techniques. 5

The Eden model is perhaps the simplest one
which describes a growing cluster: A particle on the
perimeter of the cluster acquires a new particle on
its empty nearest-neighbor sites with equal proba-
bility (properly normalized). In the DLA model
there are screening effects which differentiate the
exposed perimeter particles from the shadowed
ones by assigning them different probabilities.
However, in infinite dimensions one would expect
the excluded-volume effects (here the screening ef-
fects) to disappear and thus all particles would be-
come equally exposed. The DLA model and the
Eden model should coincide in infinite dimensions
(see also Vannimenus, Nickel, and Hakim7). The
study of the Eden model in many but finite dimen-
sions may shed light on the corresponding DLA
problem. (The connection between the Eden
model in finite dimensions and DLA has been dis-
cussed recently by Plischke and Racz. )

One might expect the growing clusters in the
Eden model to be "compact" and the mean square
size (to be defined later) of a cluster to have a quite
simple asymptotic behavior (R„2) —n'~d or

(R ') —d (n" 1)—
as the Monte Carlo study has suggested for
d =2, 3. Throughout this Letter d is the Euclidean
dimensionality.

If (R„2) is a smooth function of d for large n then
one should be able to obtain the following expan-

sion in 1/d using Eq. (1):

(R„2) —ln(n) + [1 n( n)j /d+O(1/d ).

In this Letter, we have studied the Eden model in
many dimensions. Using the exact enumeration
and recursion relations we obtained the surprising
result

(R„2) —2 ln(n) (1 + 3/2d)

which does not agree with Eq. (1). Our result im-

plies that the limits d ~ and n ~ cannot be
naively interchanged, that Eq. (1) cannot hold for
all d, and that there might exist a critical value d,
above which R„2—ln(n). However, to obtain a
conclusive answer one should study higher orders in
the 1/d expansion which is very tedious in our ap-

proach. In view of our present result, we would
like to draw attention to the possibility of critical
large-d behavior in the Eden and DLA models.

In the following, we briefly explain our enumera-
tion recursion method first for d = ~ and then in-
clude the 1/d correction. To have a definite idea of
the Eden model in infinite dimensions, which is
equivalent to keeping the leading order in the 1/d
expansion, we write down the first few order dia-

grams in Fig. 1. The diagrams only indicate the to-
pology of the clusters. In many dimensions, the
probability of two bonds being parallel is propor-
tional to 1/d, so that in the computation we can
consider all bonds to be orthogonal to each other.
The numbers in front of the diagrams are the rela-
tive weights, which are the probabilities for these
diagrams to occur when multiplied by the normali-
zation constant 1/(n —1)!. For simplicity we have
suppressed a factor (2d)" which comes from the
number of ways in which the diagrams can be em-
bedded on the lattice. The normalization can be
also easily understood: It is just the sum of the to-
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Next we would like to have an ensemble-
averaged square size (i.e., mean square size), which
is defined by
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FIG. 1. The first five orders of diagrams of the Eden
model in infinite dimension. See the text for details.

where ~g is the weight for a diagram and the sum
runs over all the topologically distinct diagrams for
order n.

We have found the following recursion relation
for the integer-valued function S„:

S„+)——(n +2)S„+n xn!. (5)
tal weights for order n.

For a single diagram we can define a mean square
radius

Is= X(x, xj)'=—XI;,, (2)
i&J i&J

where the sum runs over all the sites of the diagram
under consideration and lj is the distance from site
i to site j measured along the bonds of the diagram.
The second equality follows from the fact that all
bonds are orthogonal to each other. The first few
lg's are also indicated by the numbers over the dia-
grams in Fig. 1. The normalization factor for lg is
2/n (n —1), which is one over the total number of
terms in the sum (2) .

We present only the main idea used to obtain Eq.
(5), omitting the details, which are quite tedious.
We take two successive orders for which we can cal-
culate S„and S„+t by hand using Eq. (4) (see also
Fig. 1). The contribution to S„+t from the dia-
grams of order n + 1 can be divided into two parts:
One part is the contribution from the old diagrams
which is proportional to S„,and the other part is the
contribution in which the new particle is involved.
From this analysis we can write down a recursion
relation for generic n and then check it for a few
higher orders. It is in this way that we have derived
Eq. (5).

From (3) and (5) with some algebra we can easily
find the asymptotic behavior:

(R„) —21 ( ) —2(2 —C) +4 ln(n) + 5 —4(2 —C)
n n

(6)

and the ensemble average is

(R 2k) — S (k)
n! (n —1)

S (k) X w I(k)

(8)

We have also found the recursion relation (de-
tails omitted:)

k —1

S„" = (n +2)S„"+n xn!+2 X I
Sk('), (10)

1=1 ~

where S„' =S„.
In principle, we can solve Eq. (10) consecutively

for all higher-order moments. The second moment
is of particular interest, the corresponding recursion

where C is the Euler constant.
We may also be interested in higher moments.

In place of Eq. (2), for the kth moment we now
have

I(k) $ (x x )2k g lk

[(R„')—((R„'))']
((R 2) )2 21n(n)

' (12)

which implies that the fluctuations still exist in in-
finite dimensions and that they are small only on a
logarithmic scale. This information may be useful
for the mean-field approximations to the cluster
growth models.

Next we would like to calculate the 1/d correc-
tions, which are important if the many-dimension
analysis is to make contact with reality. To get the
first-order corrections, we do not have to worry
about closed diagrams since they are suppressed by

relation being

S„(+)t ——(n+2)S„( )+n xn!+4S„.
Subsituting the solutions of (11) into (8) gives us
(R„) in closed form, which enables us to calculate
the fluctuations around the mean square size. The
leading contribution that we found is
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a factor of at least (I/d)3 for a hypercubic lattice.
Here we are concerned with the correction to (R„2) .

In Fig. 2 we list the diagrams of the first few or-
ders. S„corresponds to the contribution from the
old diagrams listed in Fig. 1. The normalization
factor is almost the same as before, but there is an
extra normalization due to the corrections and it is

I

written explicitly in front. We define T„as the
coefficient of —1/2d.

By careful but tedious geometrical and algebraic
analysis examining how T„+~ and T„are related,
similar to the analysis leading to (5), we arrive at
the following recursion relation (with details again
omitted):

fl 2

T„+t
= (n + 2) Tn + n2 [2 (n —2) (n —2)!+ (n —1)!X 2 (k —1)/k]

k=1

+2n$„+4[$„~+(n —1)$„2+.. . + (n —1)(n —2) 3$2]. (13)

From this relation we should be able to find T„ in closed form since S„ is known. Then we can compute the
mean square size with the first-order 1/d correction by the following formula, which is symbolically ex-
pressed in Fig. 2:

2
1

1 "~'2(k —1) $ Tn

which has the asymptotic behavior (R„)—21n(n)
x (1+3/2d). This is the rather unexpected result
that we stated at the beginning of this Letter.

We feel that it is possible but exceedingly compli-
cated to compute still higher corrections in 1/d.
Perhaps one should try to find only the asymptotic
behavior for large n instead of attempting tedious
exact enumerations.

Equation (13) is obtained by many intricate steps
and it is very crucial for our final result. Is there
any crosscheck on whether it is correct? For this
reason we have performed direct countings of S„
and T„ from diagrams in Figs. 1 and 2, for n ~ 8
(we display the diagrams for n up to 5 only). We

S)

S)

[l+2—dT][83- 2d
!2 ~ = ]

2 1

+ 1 2 4 1[ 2d (2 3}][34 2d !8 X + ~ l]

(14)

list these numbers in Table I and we have checked
that (5) and (13) hold (we invite the readers also to
do the same).

Might there still be a logical error involved, for
example, in producing the relative weights in Fig.
2? To ensure that the overall scheme is correct, we
have done a mini Monte Carlo simulation in which
only a few particles are introduced (typically n = 8)
for various dimensions (d = 2, . . . , 20). The pro-
gram follows the exact rules of the Eden model and
ignores all tricks that we have used in analytic com-
putations. From the results of this simulation we
have isolated the leading and next to leading contri-
butions to check the exact formula (14) numerically
for n ~ 8. Equation (14) is confirmed (this small
system allows very good statistics, the typical itera-
tion number being 10 and the statistical error
about 3% or less, with 1 h of Vax/780 CPU time).

It also seems interesting to study the Eden model
on a Cayley tree, which excludes any closed confi-
guration. We have solved the Eden model on an
arbitrary q-coordination Cayley tree in a way similar

4 6 1 ~ 16 14

[ 2d! 2 3+ 4!][ &2d

II 14

~ )]

TABLE I. The first few orders of S„and T„(n ~ 8).

Sn

FIG. 2. The Eden model in many dimensions. Here
we have taken into account the excluded-volume effects
to the level 1/d. The factors in front record modifica-
tions to the normalizations in Fig. 1. S„denotes the cor-
responding part in Fig. 1. A cross implies two particles at
the same point. (Note that two particles never occupy
the same point in the Eden model; however, we have ar-
ranged in the computational process for such diagrams to
occur in subtracted parts for simplicity. )
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to that described before and we present only the result below. We have the following recursion relation de-
fining the auxiliary quantity C(q, n) for each value of q:

n —1

C (qn + 1) = C (qn) + (q —2) 2 {f (qn) —$ /t (qnk) C (qk) I,
k=2

t t

h(q, n, k) =4(q —1)I' k+ I (n) I' n+ I'(k+1)2g 3g —2

q —2 q —2
t

f(q, n) = n(q —1)I' 1+ I' n+ qI' I+ I' n+2q q 2(q —1) 3q —2

q —2 q —2 —2 q —2
t

—1

(Is)

From the above three formulas we can obtain
C (q, n) in closed form (in principle, of course).

The relation of C(q, n) to the mean size (instead
of mean square size) with the proper normalization
is given by (R (q, n)) = [2(q —2) /nf(q, n —1)]
&& C (q, n ). Although the formula is complicated for
an arbitrary pair (q, n), the leading large-n behavior
if simple (although not easy to derive):

(R (q, n)) —2 1+ ln(n) (16)
1

n~oo g 2

In a recent work by Vannimenus, Nickel, and
Hakim, the Eden model on the Cayley tree is
solved and the relationships among the Eden model
on the Cayley tree and in infinite dimensions and
the DLA model are discussed. They use a different
and perhaps more mathematically rigorous tech-
nique. Our result, Eq. (16), on the Cayley tree
seems to agree with their gyration radius [Eq. (28)]
up to a multiplicative constant. The Cayley tree has
a peculiar topology and we do not expect that any
connection exists between the Cayley tree and other
lattices.

To summarize, in this Letter we have studied the
Eden model in many dimensions. The result in in-
finite dimensions, (R„2) —In(n), perhaps is not too
surprising. If (R„) as a function of d is smooth,
then the naive expectation would be (R„)—d (n'~d
—1), which is consistent with Monte Carlo results
in two and three dimensions. Our result including
the first 1/d correction (R„)—ln(n)(1 +3/2d),
reveals that there are surprises for the Eden mdoel
for large values of d, and perhaps for other cluster
growth models such as the DLA model as well.

Intuitively we would like to understand why the
Eden model can have critical dimensionality. In
sufficiently low dimensions, one would expect the

Eden model to have Euclidean dimensionality',
however, as the dimensionality goes up the surface
portions become more and more important, and
thus the fluctuations become important. There
might be a critical d, above which the Euclidean
dimensionality rule no longer applies to the Eden
model.

The first-order correction is not sufficient to
determine definitively whether or not a singularity
exists nor what kind of singularity might be expect-
ed if one does exist, but it does suggest such a pos-
sibility. We hope that our study may stimulate oth-
er work on these ideas.

We thank L. Kadanoff and L. Peliti for helpful
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