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Consider a macroscopic system rendered unstable by both thermal fluctuation and quan-
tum tunneling. Kramers’s classical theory of the rate of decay by thermal activation is ex-
tended to lower temperatures where quantum tunneling prevails. By means of a functional-
integral approach, a general formula for the decay rate is derived which describes the transi-
tion between the high- and low-temperature regimes. The influence of dissipation on the de-

cay rate is emphasized.

PACS numbers: 05.30.—d, 05.40.+j

The decay of metastable states in macroscopic
systems plays a central role in many areas of physi-
cal sciences including low-temperature physics, nu-
clear physics, and chemical kinetics. Since Kra-
mers,! a popular model of such systems has been a
Brownian particle of mass M moving in a meta-
stable potential ¥ (g) while coupled to an environ-
ment at temperature 7. At sufficiently high tem-
peratures the potential barrier separating the meta-
stable minimum from the region of lower potential
is surmounted in a classical fashion by thermal ac-
tivation, and the decay rate is given by the familiar
Arrhenius law.! On the other hand, at low tem-
peratures tunneling through the barrier becomes

more probable, and the decay rate is given by the
1

tunneling rate. Recently, Caldeira and Leggett?
have shown that this quantum decay rate is strongly
affected by the frictional influence of the environ-
ment. In this Letter we turn our attention to the
transition from one region to the other.

We employ a functional-integral approach which
is convenient because it allows the inclusion of dis-
sipation as a nonlocal term in the effective action.?
In the transition region the functional integral can-
not be done by steepest descents but requires a
more careful treatment which will be presented
here.

The partition function of a Brownian particle may
be written as a functional integral® over periodic
paths where the path probability is weighted accord-
ing to the Euclidean action®*

sta=J" artimit+ v @1+ £ [ ar [ avkc—1)g (a0, M

where 8= 1/kgT. The first term in (1) describes
the reversible motion while the second term
describes the frictional influence of the environ-
ment. The damping kernel k£ (7) may be expressed
as a Fourier series*

+ o0
k(r)=MMEB) D Lyexpliver),

n= —oo

where v,=vn, v=(2n/kB), and where {,=7y
X (i|lv,|)|va| is related to the frequency-dependent
damping coefficient y(w). In the important case of
Ohmic dissipation we simply have {, =v|v,|.

Consider now a potential ¥ (¢) which has a meta-
stable minimum at ¢ =0, V=0, and a barrier of
height ¥, =V (g,) (Fig. 1). For a particle in the
metastable well, the partition function must be de-
fined by an analytical continuation from a stable to
the unstable situation.® This leads to an (exponen-
tially small) imaginary part of the free energy F
which is proportional to the decay rate.>® We ex-
pect this connection to remain unchanged in the
dissipative case for reasons given below.

At high temperatures the imaginary part of F

comes from the contribution of the ‘‘saddle point”’
q(r)=g,. Continuing the integral over the un-
stable mode into the complex plane, one finds

ImF = (1/2B) Do/ 1Dy |12 exp(—BV,),  (2)

where Dg and D, are determinants of second-order
variation operators given by

+oo too
Do= Il v}+wl+¢; Dy= II A,
n= —oo

in which A, =v}?— 0 +,. The frequencies w, and

wp are given by wj=V"(0)/M and o}
=—V"(g)/ M.

When the temperature is lowered one of the
eigenvalues A, goes through 0 at a certain tempera-
ture. For all models of the dissipative mechanism
of interest, \; is the first eigenvalue changing sign.
The relation \,(7,)=0 defines a crossover tem-
perature 7, which, e.g., for Ohmic dissipation is
given by

T, = (k/2mkg) [(wf +y%/4)V2—/2].
Note that dissipation lowers 7, so that quantum

n=—oo
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FIG. 1. Form of the metastable potential.

tunneling effects are diminished by the damping.
The high-temperature formula (2) holds above T,,
and in this region the decay rate I' is related to ImF
by® I' = (2/#) (B/B. )ImF which gives

v+ wd+i,

= 2 2
2wy n=1Va—wj +{,

where v, =2w/kB, =2wkgT,/k. The result (3) has
been obtained by Wolynes’ following a different
line of reasoning.

In the classical limit (7 >> T,) one finds
= (v,wo/2mwy) exp(—BV,) which for Ohmic
dissipation gives the familiar result found by Kra-
mers.! On the other hand, putting \;=a (v —v,)/
v, where a =v. (v +v, +y) for Ohmic dissipation,
we find

I'=(v./2m)AT,(T—T,) 'exp(—BV,),

Ve o

r (3)

exp(—g8V,),

4)
where we have introduced the dimensionless quan-
tity

vi+ol+e,

2 2 )
a n=2 Vp —@§+,

Q)

wp
Thus, as noted by Wolynes,’ the result (3) diverges
at T=T,. This divergence will be removed by the
more detailed analysis presented below.

At temperatures below T, the partition-function
integral has another saddle point, the so-called
bounce trajectory® gz () =g, +x (7). The fluctua-
tion modes about this trajectory include a zero
mode, x (7), and an unstable mode. Deforming the

AS =t MiBl— w2V + 320 Y, Y, +aB ' (B—B) (Y +Y_?],

n=2

integration contour with respect to the negative
mode, one finds>*

So

2mh

1/2
/ Dy 1/2

| Dg
where Dy is the product of eigenvalues of bounce-

fluctuation modes with the zero eigenvalue omit-
ted. Sy is a zero-mode normalization factor

So=M fo " 2, 6)

and Sp is the action (1) evaluated along the bounce
trajectory.

—Sp
3

3
I ="
mF >

For temperatures near 7, the bounce trajectory
can be determined perturbatively. Expanding the
potential ¥ (q) about the barrier top

V(Q)=V,— 3 Mojx>+ 3, (Mc;/)x’,
j=3

where x =g — q,, we can determine the coefficients
X,=X_, of the Fourier representation of the
bounce trajectory

+ oo
(1) =q, + E X, exp(iv,7).

n= —oo

For small (8—8.)/B. we then find for the bounce
action

Sp=rBVy—5hMa’(B—B,)*/B. B

@)

®
and for the zero-mode factor (6)

So=8m*Ma (B~ B.)/k BB,
where we have assumed that the coefficient

B=4c?/w}—2c?/x,+3c,

is positive which is the case for most metastable po-
tentials of interest. The result (8) has also been ob-
tained by Larkin and Ovchinnikov.® To study the
fluctuation modes, we put q(7)=gz(7)+y(r)
and expand y (7) in a Fourier series:

y(r)= Jf Y, exp(iv,7).

n=—oo

The fluctuation y (7) leads to a change AS of the
action (1). Near 7, we may diagonalize the
second-order variation operator which gives

9)

where f’0= Yo— 2c30wp 2 X (Y +Y_)), f’i2= Y +,+2c305 "X, Y 4, while the remaining Fourier coeffi-
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cients remain unchanged. This yields
Dp=—2awiB: (BB, [Tr7.
n=2

Now, below 7, the decay fate I' is related to the im-
aginary part of the free energy by® I'=(2/k)ImF.
Collecting the results we find

=4 QuSg /i) 2 expl— BV, + thS5 (B—B.)?],

(10)
where

¥
9(B)? |s=8, 2w B

1 My.a?

Since the bounce has been determined perturba-
tively, the result (10) holds only near 7, more pre-
cisely, for |T— T,| << T,w?/a where w{/a is a fac-
tor of order 1. However, very close to T, for!®
|T—T.| < T.(v./27) (&/S§)V?, the fluctuation
+(Y + Y_,) of the bounce amplitude is of the
same order of magnitude as the amplitude X;, and
the functional integral cannot be done by steepest ,

descents. This crossover region will be studied in
the following.

For T< T, the fluctuation modes about the
bounce trajectory include two dangerous modes
whose contribution to the partition function cannot
be calculated by the method of steepest descent:
the zero mode, x(7), which describes phase fluc-
tuations of the bounce, and a quasi zero mode
describing amplitude fluctuations. The eigenvalue
of this latter mode vanishes at 7,. To proceed we
must determine the increase of action AS caused by
a fluctuation y () more accurately as in (9) by tak-
ing into account terms of the third and fourth order
in the amplitudes of the dangerous modes, i.e., in
Y, and Y_;. These higher-order terms include
nonlinear couplings between the dangerous modes
and the other modes. Having performed this ex-
pansion, we integrate out the stable modes
[Yi,n=2] by steepest descents and integrate
over the unstable mode along a contour deformed
in the usual way.> We then are left with an effec-
tive action of the dangerous fluctuations which is
given by

AS;=5MBiBIXE (Y +Y_ )2 +2X (Y| +Y_)D Y, Y_+ (¥, Y_)2].

We now introduce polar coordinates (p,¢) by pcosp =X+ 5(Y,+ Y_,), psing=(1/2/)(¥;— Y_,) and
find that AS; is independent of ¢ as it should be. After a corresponding transformation of the integration
measure, the ¢ integral is trivial and the p integral can be transformed into an error integral. The imaginary

part of the free energy then emerges as
1 D 1/2

ImF=—2—B—

wbHAn
n=2

——g——— (27 MB./B)?*Serfc[ (Ma?/2BB. )2 (B— B, ) exp(— Sz/k),

where erfc(x) =27~ sz_xm dt exp(—t?). Now, using I' = (2/#)ImF, we obtain

I'=A QS /E)Serfcl (£S5 /2)V*(B— B.) 1 expl — BV, + 7S5 (B—B.)2].

aan

Below 7, the function terfc[(#Sg/2)Y2(8—B.)] approaches 1 very rapidly and we recover our previous
result (10). On the other hand, above T, we have asymptotically

erfc[ (£S5'/2)V2(B— B, ) expl+£SE (B— B )21 = 22wk Sy ) ~V2(8, —B)~ L.

Hence I' approaches (4) and matches smoothly
onto the high-temperature formula (3). Near 7.
the relevant temperature scale is characterized by
the dimensionless scaled temperature 6= (u/
v ) (28§ /R)VA(T —T,)/T,, and the rate T is con-
veniently measured in units of the characteristic
frequency w./27 = A, (wS;'/2%)"? where A, is the
quantity (5) at the crossover temperature. Provid-
ed® (v./27) (k/S§)V? << w}/a, the temperature
dependence of the Arrhenius prefactor expressed in
these units takes on a universal form which is
shown in Fig. 2. There, the classical rate would be
represented by a horizontal line with axis intercept

r
vewo/wpw, << 1. As T, is approached from above,
the Arrhenius prefactor grows due to tunneling
contributions to the decay rate. Below 7, this
growth becomes exponentially fast, and the ex-
ponentially growing part of the prefactor is then
combined with the Arrhenius exponential factor
leading to the ‘‘bounce formula’® (10) for the decay
rate. In the zero-damping limit!! one has
S3' = —0E/9® where © =% is the bounce period
and E=0S3/00 the bounce energy. Then, (11)
gives the result found by Affleck® by means of a
Boltzmann average over energy-dependent decay
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FIG. 2. The Arrhenius prefactor of the decay rate,
I'exp(BV,), in units of w./27 is plotted as a function of
the dimensionless temperature 0« (T —T,)/T.. The
high-T formula (3) is shown as a dashed line, and the
low-T formula (10) as a dotted line. The solid line shows
the formula (11).

rates cut off at £ = V. In a dissipative system, tun-
neling events are diminished and the transition oc-
curs at lower temperatures where the rate has al-
ready reached a much lower value.

So far we have not addressed the important issue
of whether the imaginary part of the free energy
remains proportional to the decay rate when dissipa-
tion is included. We expect the formulas® relating
I' to Im F above and below 7, to remain unchanged
for the following reasons. The result (3) for T
based on I'=(2/#)(B/B8.)ImF for temperatures
above 7, coincides with an earlier result by
Wolynes’ derived by means of a real-time calcula-
tion based on a Green-Kubo formula. Further, for
temperatures slightly below 7., the validity of
I' = (2/f)ImF for the dissipative case can be veri-
fied by treating the decay in a multidimensional po-
tential which includes the environmental coordi-
nates by conventional methods. Finally, I' = (2/
#)ImF holds for dissipative systems at T =0.2
These arguments certainly provide strong evidence
for the corrections of our approach.

The results derived in this Letter are very gen-
eral, and they can be applied to analyze experiments
on the decay of metastable states in dissipative sys-
tems in the temperature range where quantum ef-

1790

fects are important. In particular, the problem of
macroscopic quantum tunneling in Josephson sys-
tems has recently attracted a great deal of experi-
mental and theoretical interest. The crossover from
classical to quantal behavior has been observed,
e.g., in experiments on the decay of the zero-
voltage state in current-driven Josephson junc-
tions.!? An analysis of our results shows that quan-
tum effects enhance the decay rate by an order of
magnitude as compared to the classical rate already
at intermediate temperatures 7 = 37,. This effect
is important for the precise determination of the
junction parameters, and its consideration leads to
an improved agreement between the very low-
temperature data and the Caldeira-Leggett theory.?
We intend to discuss the details of this application
elsewhere.
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