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A direct connection is proposed between the "dynamic" transport properties and the
"static" topological structure for branched polymers in any number d of spatial dimensions.

Specifically, the resistivity exponent f is given by ( = df/dt, where df and dt are the fractal and

topological dimensions (the number of sites within path length l of a given site scales as

M —l ). To confirm this new result, we carry out extensive exact and Monte Carlo calcula-

tions for d = 2, 3, 4, and 8.
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How does one describe the structure of a large
branched polymer in dilute solution? This question
has long been of interest, both for its mathematical
fascination and for its practical importance. To
date, attention has been focused on the fractal
dimension df which characterizes the dependence
of the polymerization index M on the radius of

d
gyration R, M —R . Zimm and Stockmayer'
found df =4 for the Cayley tree, which was later
recognized to be exact for spatial dimensionalities 1
above d, =8. Recently, the exact results df=2
[d = 3] and df ———", [d = 4] 4 were obtained.

These results concern the geometrical structure.
Many physics questions, such as those involving
transport, are thought to depend also on the topolog-

ical structure —which does not enter into the factors
determining df. However, the precise fashion in

which a transport quantity depends on geometry
and topology is not known. Very recently consider-
able effort has been devoted to the study of the
possible relationship between geometric and trans-
port properties for percolation5 although at present
there is no clear picture. In this Letter we argue
that there is a direct connection between "dynam-
ic" transport properties and the "static" geometri-
cal and topological structure of branched polymers
through the simple relation

g = df/d(. (I)
Here ( is a "dynamic" exponent: p

—R t, where p
is the electrical resistance between two points

separated by a distance R. On the other hand, df
and dl are "static" exponents: M —R is the clus-

ter mass within a direct distance R, while M —l ' is
the mass within the average "topological" or
cluster-path distance I. To obtain (1), we make
use of the fact that for the lattice-animal model of
branched polymers, we can neglect the presence of
loops without affecting the statistics. Therefore
the resistance between two points separated by a
distance of the order of R scales in the same
fashion as the topological distance between these

1/dI d /dI
points: p

—I —M ' —R ', from which (1) fol-
lows.

In order to test (1), it is convenient to use
d„—df ——(, obtained by the Einstein relation.
Hence from (1) follows

d„= df (1+1/dt). (2)

The quantity dI has been calculated for percola-
tion clusters but not for lattice animals. Thus in

the following we used Monte Carlo and exact
enumeration methods to calculate dI for d = 2, 3, 4,
and 8. We also calculated d for d =2 and 3 by
exact enumeration of random walks on large
branched polymers.

Static topological structure: Calculations of dt.—
One first needs a method of obtaining large statisti-
cal samples. If one generates percolation clusters at
a constant value of the site occupancy p (p & p, ),
then those clusters with characteristic linear dimen-
sion R « g(p) will be self-similar with fractal
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FIG. 1. The mass M as a function of the average
chemical distance (I). The slope yields d~=1.33+0.05
(d = 2) and di = 1.45 + 0.05 (d = 3). The results were
obtained from analyzing 1000 clusters of size up to 300.

dimension df given by percolation theory, while
those with R » g(p) will have fractal dimension
given by the branched polymer or "lattice-animal"
model. The problem is that the probability of find-
ing an M-site cluster with R & g(p) decreases ex-
ponentially with M, ' so that it has not been possi-
ble in the past to generate branched polymers
directly. "

Here we use a new "direct" method which is for
branched polymers what the enrichment model is
for linear polymers. First we use the conventional
cluster-growth method' to generate a percolation
cluster of Mo sites, say Mo= 20, using a value of p
so small that the probability of obtaining a twenty-
site cluster, II, is typically about 0.01 (i.e. , 100 trials
may be necessary to succeed in growing the
twenty-site cluster). After finally obtaining a clus-
ter of size Mo, we make a fixed number A of at-
tempts to increase it to size 2MO, where A is chosen
to satisfy A « 1/II. ' If we fail, then we discard
the entire cluster and return to the beginning. If we
succeed, then we make A attempts to increase our
cluster from size 2MO to size 3MO and so on.

Using this procedure, we typically generated lat-
tice animals of size 300. In order to confirm that
they had the structure of lattice animals, we mea-
sured the mean square radius of gyration A~ as a
function of the number of sites; from the slope we
find df =1.55+0.05 for d =2 and df =2.0+0.05
for d = 3, consistent with independent estimates of
the fractal dimension. '4

To analyze for the topological properties of the
lattice animals, we choose randomly a site to call
the origin. The occupied neighbors of that site
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FIG. 2. Successive estimates of dI for d = 2, 3, 4, and

8 obtained from exact enumeration methods. Extrapola-
tions of these sequences to M ~ yield our final esti-
mates d~=1.33 +0.02 (d = 2), 1.47 +0.04 (d = 3),
1.61+0.06 (d =4) and 2.00+0.01 (d = 8).

form the first "shell"—its topological or chemical
distance from the origin is 1. The next-nearest
neighbors of the origin form the second shell, and
I =2. The total number of sites or "mass" at a
chemical distance 1ess than or equal to I scales as

d(M(l) —(l) ' or, equivalently, the mass in shell at
distance l, B(l) =dM/dl —l ' . From Fig. I we
see that for lattice animals the simulations yield
di=1.33+0.05 for d =2 and di=1.45+0.05 for
d =3."

The exponent d& was calculated by exact

r. = df/4 d, /2 = df/d„

1

1.56
2
2.4

1

1.33
1.47
1.61
2

2

2.78
3.37
3.89
6

1

1.17
1.36
1.49
2

1

0.57
0.60
0.62
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TABLE I. Summary of the values for the different ex-
ponents discussed in the text.
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enumeration ("series expansions"). ' Here we ex-
haustively study each configuration of lattice animal
of mass M, and for each configuration we calculate
the topological distance l of each site from the "ori-
gin" in the cluster-counting algorithm. The max-
imum topological distances for each cluster are
averaged over all configurations with the same
mass. We found that successive estimates of dI

behave smoothly with increasing values of M, just
as we found earlier for successive estimates of df
obtained from calculations of the radius of gyra-
tion. ' Hence we used analogous extrapolation pro-

cedures (Fig. 2) to obtain the limiting exponents,
with the results d&

——1.33 + 0.02 (d = 2), 1.47+ 0.04
(d =3), and 1.61+0.06 (d =4). These estimates,
based on exact enumerations up to 18, 12, and 11
terms for 2 =2, 3, and 4, agree with the Monte
Carlo work for d =2 and 3. Also, for lattice an-
imals on the Cayley tree we calculated exact results
up to 300 terms and our extrapolation methods give
dI =2.00+0.01. The Cayley tree is solved exactly
by use of a recursion relation for T(l,M), the
number of lattice-animal configurations with l shells
("generations") and mass M. We find

T(1+1,M+1) =2 X T(lM')T'(IM —M') — X T(IM')T(lM —M')+2T(lM), (3)
M'-0

where T'(l M) = Xt, oT(l', M). This result stems
from the fact that the trees with t + 1 generations
and M+1 sites are constructed from all possible
combinations of two trees with I generations.

Table I gives our values of dI, together with pre-
dictions of Eqs. (1) and (2) that follow from them.

Dynamical transport properties: Calculations of
d„.—To test (I), we now need to calculate the dif-
fusion exponent d„=df + (. To this end, we have
used the method of exact enumeration of random
walks on clusters. We obtained exact results for
the probability P(r, t) that a random walk starting
from the origin at time t = 0 will be at site r at time
t. We calculated this function exactly for t ~ 1S00,
using 1000 different lattice-animal configurations,
each configuration containing at least 330 sites.
From P(r, t) we can calculate any diffusion-related
quantity, e.g. , the mean square displacement

lQ2

M' 0

2/d„(r ) —t ". Figure 3 shows the dependence on t
of (r2), from which we find d„= 2.78 + 0.08
(d = 2) and 3.37 + 0.10 (d = 3). Both estimates
agree with the prediction of Eq. (1) (cf. Table I).'
From the knowledge of d„and df, we can also cal-
culate the fracton dimension d, =2df/d„[which
also equals 2d&/(dt+ I) independent of df]. The
results (Table I) clearly show that the Alexander-
Orbach conjecture that d, = —, cannot be extended
to lattice animals. '

In summary, we have found a relation, Eq. (1),
between "dynamic" and "static" properties. This
relation holds for any fractal structure for which
loops are not relevant: branched polymers for all d,
percolation clusters for d ) 6, and Witten-Sander
clusters (if loops are indeed irrelevant as widely be-
lieved). Our new results, Eqs. (1) and (2), are
borne out by detailed numerical calculations using
Monte Carlo simulations and exact enumeration
methods. It is of interest to compare our results for
the topological dimension of branched polymers
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FIG. 3. The dependence on t of the mean square dis-
placement (r ) . The slopes yield d = 2.78 + 0.08
{d = 2) and 3.37 + 0.10 (d = 3),
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FIG. 4. Comparison of our results for d~ with results
for percolation clusters taken from Ref. 7.



VOLUME 53, NUMSER 2 PHYSICAL REVIE%' LETTERS 9 JULY 1984

(BP) with other recent results for percolation clus-
ters (Fig. 4). For d ~ 8, both exponents are the
same but the amplitudes differ, with A„„,= —,

' and

A»= —,', , where M-Al '. For 1& d & 8, it ap-
pears that dta & dp'"', just as dfap & dj""'.
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